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Lecture-5

Lexical Analyzer



Topics Covered

n Tokens
n Attribute
n Patterns
n Lexemes
n Regular Expressions



Introduction

n Informal sketch of lexical analysis
– Identifies tokens in input string

n Issues in lexical analysis
– Lookahead
– Ambiguities

n Specifying lexemes
– Regular expressions
– Examples of regular expressions



Lexical Analyzer

n Functions
– Grouping input characters into tokens
– Stripping out comments and white spaces
– Correlating error messages with the source 

program
n Issues (why separating lexical analysis from 

parsing)
– Simpler design
– Compiler efficiency
– Compiler portability (e.g. Linux to Win)



The Role of a Lexical Analyzer
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Lexical Analysis

n The input is just a string of characters:
\t if (i == j) \n \t \t z = 0;\n \t else \n \t \t z = 1;

n Goal: Partition input string into substrings
– Where the substrings are tokens



What’s a Token?

n A syntactic category
– In English:

n noun, verb, adjective, …
– In a programming language:

n Identifier, Integer, Keyword, Whitespace,



What are Tokens For?

n Classify program substrings according to 
role

n Output of lexical analysis is a stream of 
tokens . . .which is input to the parser

n Parser relies on token distinctions
– An identifier is treated differently than a 

keyword



Tokens

n Tokens correspond to sets of strings.
– Identifier: strings of letters or digits, starting 

with a letter
– Integer: a non-empty string of digits
– Keyword: “else” or “if” or “begin” or …
– Whitespace: a non-empty sequence of blanks, 

newlines, and tabs



Typical Tokens in a PL

n Symbols:  +, -, *, /, =, <, >, ->, …
n Keywords: if, while, struct, float, int, …
n Integer and Real (floating point) literals

123, 123.45
n Char (string) literals
n Identifiers
n Comments
n White space



Tokens, Patterns and Lexemes

– Pattern: A rule that describes a set of strings
– Token: A set of strings in the same pattern
– Lexeme: The sequence of characters of a token

Token Sample Lexemes Pattern
if if if
id abc, n, count,… letters+digit

NUMBER 3.14, 1000 numerical 
constant

; ; ;



Token Attribute

n E = C1 ** 10

Token Attribute

ID Index to symbol table entry E

=

ID Index to symbol table entry C1

**

NUM 10



Lexical Error and Recovery

n Error detection
n Error reporting
n Error recovery

– Delete the current character and restart 
scanning at the next character

– Delete the first character read by the scanner 
and resume scanning at the character 
following it.



Specification of Tokens

n Regular expressions are an important 
notation for specifying lexeme patterns. 
While they cannot express all possible 
patterns, they are very effective in 
specifying those types of patterns that we 
actually need for tokens.



Strings and Languages

n An alphabet is any finite set of symbols such 
as letters, digits, and punctuation. 
– The set {0,1) is the binary alphabet
– If x and y are strings, then the concatenation of x 

and y is also string, denoted xy,  For example, if 
x = dog and y = house,  then xy = doghouse. 

– The empty string is the identity under 
concatenation; that is, for any string s, ES = SE = 
s.



n A string over an alphabet is a finite 
sequence of symbols drawn from that 
alphabet. 
– In language theory, the terms "sentence" and 

"word" are often used as synonyms for "string." 
– |s| represents the length of a string s, Ex: banana 

is a string of length 6 
– The empty string, is the string of length zero.

Strings and Languages (cont.)



Strings and Languages (cont.)
n A language is any countable set of strings 

over some fixed alphabet. 

n Let L = {A, . . . , Z}, then{“A”,”B”,”C”, 
“BF”…,”ABZ”,…] is consider the language 
defined by L

n Abstract languages like , the empty set, or
{},the set containing only the empty string, 

are languages under this definition.



Terms for Parts of Strings



Operations on Languages

Example:
Let L be the set of letters {A, B, . . . , Z, a, b, . . . , z ) and
let D be the set of digits {0,1,.. .9). 
L and D are, respectively, the alphabets of uppercase and  lowercase 
letters and of digits. 
other languages can be constructed from L and D, using the operators 
illustrated above 



Operations on Languages (cont.)
1. L U D is the set of letters and digits -

strictly speaking the language with 62 
(52+10) strings of length one, each of which 
strings is either one letter or one digit.

2. LD is the set of 520 strings of length two, 
each consisting of one letter followed by 
one digit.(10×52). 
Ex: A1, a1,B0,etc

3. L4 is the set of all 4-letter strings. (ex: aaba, 
bcef)



4. L* is the set of all strings of letters, 
including e, the empty string.

5. L(L U D)* is the set of all strings of letters 
and digits beginning with a letter.

6. D+ is the set of all strings of one or more 
digits.

Operations on Languages (cont.)



Regular Expressions
n The standard notation for regular languages is regular expressions.
n Atomic regular expression: 

n Compound regular expression: 



Cont.

larger regular expressions are built from smaller ones. Let r and s are regular 
expressions denoting languages L(r) and L(s), respectively.
1. (r) | (s) is a regular expression denoting the language L(r) U L(s).
2. (r) (s) is a regular expression denoting the language L(r) L(s) .
3. (r) * is a regular expression denoting (L (r)) * .
4. (r) is a regular expression denoting L(r). This last rule says that we can
add additional pairs of parentheses around expressions without changing
the language they denote.
for example, we may replace the regular expression (a) | ((b) * (c)) by a| b*c.



Examples



Regular Definition
n C identifiers are strings of letters, digits, and 

underscores. The  regular definition for the 
language of C identifiers. 
– LetterA | B | C|…| Z | a | b | … |z| -
– digit  0|1|2 |… | 9
– id letter( letter | digit )*

n Unsigned numbers (integer or floating point) 
are strings such as 5280, 0.01234, 6.336E4, 
or 1.89E-4. The regular definition
– digit  0|1|2 |… | 9
– digits  digit digit*
– optionalFraction  .digits | 
– optionalExponent  ( E( + |- | ) digits ) | 
– number  digits optionalFraction optionalExponent



RECOGNITION OF TOKENS

•The patterns for the given tokens:

•Given the grammar of branching statement:
The terminals of the grammar, which are 
if, then, else, relop, id, and number, are 
the names of tokens as used by the lexical 
analyzer.
The lexical analyzer also has the job of 
stripping out whitespace, by recognizing 
the "token" ws defined by:



Tokens, their patterns, and attribute values



Recognition of Tokens: Transition Diagram

Ex :RELOP = < | <= | = | <> | > | >=

0

1

5

6

2

3

4

7

8

start
<

=

=

=

>

>

other

other

return(relop,LE)

return(relop,NE)

return(relop,LT)

return(relop,GE)

return(relop,GT)

return(relop,EQ)

#

#
# indicates input retraction



Recognition of  Identifiers

n Ex2: ID = letter(letter | digit) *

9 10 11
start letter

return(id)

# indicates input retraction

other #

letter or digit
Transition Diagram:



Mapping transition diagrams into C code

9 10 11
start letter

return(id)
other

letter or digit

switch (state) {
case 9:

if (isletter( c) ) state = 10; else state = 
failure();

break;
case 10: c = nextchar();

if (isletter( c) || isdigit( c) ) state = 10;  else state 11
case 11: retract(1); insert(id); return;



Lexical analyzer loop

Token nexttoken() {
while (1) {

switch (state) {
case 0: c = nextchar(); 

if (c is white space) state = 0;
else if (c == ‘<‘) state = 1;
else if (c == ‘=‘) state = 5;
…

case 9: c = nextchar();
if (isletter( c) ) state = 10; else state =fail();
break;

case 10: ….
case 11: retract(1); insert(id);

return;



Recognition of Reserved Words

• Install the reserved words in the symbol table initially. 
A field of the symbol-table entry indicates that these 
strings are never ordinary identifiers, and tells which 
token they represent.
• Create separate transition diagrams for each 
keyword; the transition diagram for the reserved 
word then



The transition diagram for token number
Multiple accepting state

Accepting integer
e.g. 12

Accepting float
e.g. 12.31

Accepting float
e.g. 12.31E4



RE with multiple accepting states
n Two ways to implement:

– Implement it as multiple regular expressions.
each with its own start  and accepting states. Starting with 
the longest one first, if failed, then change the start state to  
a shorter RE, and re-scan. See example of Fig. 3.15 and 3.16 
in the textbook.

– Implement it as a transition diagram with multiple 
accepting states. 
When the transition arrives at the first two accepting states, 
just remember the states, but keep advancing until a failure 
is occurred. Then backup the input to the position of the last 
accepting state.



Lexical Analyzer Generator

n Lexical analyzer generator is to transform 
RE into a stade transition table (i.e. Finite 
Automation)

n Theory of such tralsformation
n Some practical consideration



Finite Automata

n Transition diagram is finite automation

n Nondeterministic Finite Automation (NFA)
– A set of states
– A set of input symbols
– A transition function, move(), that maps state-

symbol pairs to sets of states.
– A start state S0

– A set of states F as accepting (Final) states.



Example

0 1 3
start a

2
b b

a

b

The set of states = {0,1,2,3}
Input symbol = {a,b}
Start state is S0, accepting state is S3



Transition Function

n Transition function can be implemented as a 
transition table.

State Input Symbol

a b
0 {0,1} {0}

1 -- {2}

2 -- {3}



Simulation of NFA

n Given an NFA N and an input string x, determine whether N 
accepts x
S:= e-closure({s0}) ;  a := nextchar;
While a <> eof do begin

S:= e-closure(move(S,a));
a:= nextchar;

end
if (an accepting state s in S, 

return(yes) 
otherwise return (no)



Computing the -closure (T)

Compiler Construction



n Non-deterministic Finite Automata (NFA)
– An NFA accepts an input string x iff there is a 

path in the transition graph from the start state 
to some accepting (final) states.

– ThE language defined by an NFA is the set of 
strings it accepts

n Deterministic Finite Automata (DFA)
n A DFA is a special case of NFA in which

– There is no e-transition 
– Always have unique successor states.



s = s0; c := nextchar;
while ( c <> eof) do

s := move(s, c);
c := nextchar;

end
if (s in F) then return “yes”

How to simulate a DFA

0 1 3start a 2b b

a

b



Regular Expression to NFA (1)

• For each kind of RE, there is a corresponding  NFA To 
convert any regular expression to a NFA that defines the 
same language. 

• The algorithm is syntax-directed, in the sense that it 
works recursively up the parse tree for the regular 
expression. 

• For each sub-expression the algorithm constructs an 
NFA with a single accepting state.



n INPUT: A regular expression r over alphabet .
n OUTPUT: An NFA N accepting L(r).
n Method: Begin by parsing r into its constituent sub-expressions. The 

rules for constructing an NFA consist of basis rules for handling sub-
expressions with no operators, and inductive rules for constructing 
larger NFA's from the NFA's for the immediate sub-expressions of a 
given expression.

– For expression e construct the NFA

– For any sub-expression a in C, construct the 
NFA



RE to NFA (cont.)

n NFA for the union of two regular 
expressions

n Ex: a|b



NFA for the closure of a regular expression

(a|b)*



Example: Constructing NFA for regular expression 
r= (a|b)*abb

Step 1: construct a, b
Step 2: constructing a | b
Step3: construct (a|b)*
Step4: concat it with a, then, b, then b





Conversion of NFA to DFA

n Why?
– DFA is difficult to construct directly from RE’s
– NFA is difficult to represent in a computer 

program and inefficient to compute
n Conversion algorithm: subset construction

– The idea is that each DFA state corresponds to a 
set of NFA states.

– After reading input a1, a2, …, an, the DFA is in a 
state that represents the subset T of the states of 
the NFA that are reachable from the start state.



Subset Construction Algorithm

Dstates := e-closure (s0)
While there is an unmarked state T in Dstates do
begin

mark T;
for each input symbol a do
begin

U := e-closure ( move(T,a) );
if  U is not in Dstates then

add U as an unmarked state to Drtates;
Dtran [T, a] := U;

end
end

Compiler Construction



Example NFA to DFA
n The start state A of the equivalent DFA is -closure(0), 

– A = {0,1,2,4,7},
n since these are exactly the states reachable from state 0 via a path all of 

whose edges have label . Note that a path can have zero edges, so state 
0 is reachable from itself by an  -labeled path.

n The input alphabet is {a, b). Thus, our first step is to mark A and 
compute 

Dtran[A, a] =  -closure(moue(A, a)) and 
Dtran[A, b] =  - closure(moue(A, b)) .

n Among the states 0, 1, 2, 4, and 7, only 2 and 7 have transitions on a, to 3 
and 8, respectively. Thus, 

move(A, a) = {3,8). Also,  -closure({3,8} )= {1,2,3,4,6,7,8), so we 
conclude call this set B, 

let Dtran[A, a] = B



NFA to DFA (cont.)
n compute Dtran[A, b]. Among the states in A, only 4 has a transition on 

b, and it goes to 5.

n Call it C
n If we continue this process with the unmarked sets B and C, we 

eventually reach a point where all the states of the DFA are marked.



EX(2) NFA to DFA conversion

0 1 3
start a

2
b b

b

a

(0,a) = {0,1}
(0,b) = {0}
({0,1}, a) = {0,1}
({0,1}, b) = {0,2}
({0,2}, a) = {0,1}
({0,2}, b) = {0,3}

New states

A = {0}
B = {0,1}
C = {0,2}
D = {0,3}

a b
A B A

B B C

C B D

D B A



NFA to DFA conversion (cont.)

A B D
start a

C
b b

b

a

a b
A B A

B B C

C B D

D B A

a
b

a



NFA to DFA conversion (cont.)

0

1
start


2

a

3


4
b

a

b

How about e-transition? 
Due to e-transitions, we must compute e-closure(S) which
is the set of NFA states reachable from NFA state S on
e-transition, and e-closure(T) where T is a set of NFA states.

Example: e-closure (0) = {1,3}



Example

1

2
start

 a

3a

4

b

a|b
5

a

Dstates := -closure(1) = {1,2}
U:= -closure (move( {1,2}, a)) = 
{3,4,5}
Add {3,4,5} to Dstates
U:= -closure (move( {1,2}, b)) = {}
-closure (move( {3,4,5}, a)) = {5}
-closure (move( {3,4,5}, b)) = {4,5}
-closure (move( {4,5}, a)) = {5}
-closure (move( {4,5}, b)) = {5}

a b

A{1,2} B --

B{3,4,5} D C

C{4,5} D D

D{5} -- --



DFA after conversion

A Bstart

D

a C

a|b

b

a b

A{1,2} B --

B{3,4,5} D C

C{4,5} D D

D{5} -- --

a



Minimization of DFA
n If we implement a lexical analyzer as a DFA, 

we would generally prefer a DFA with as few 
states as possible, since each state requires 
entries in the table that describes the lexical 
analyzer.

n There is always a unique minimum state 
DFA for any regular language. Moreover, 
this minimum-state DFA can be constructed 
from any DFA for the same language by 
grouping sets of equivalent states.



Algorithm 3.39 : Minimizing the number of states of a DFA.

INPUT: A DFA D with set of states S, input alphabet , start state 0, and 
set of accepting states F.

OUTPUT: A DFA D' accepting the same language as D and having as few 
states as possible.



Step 2



Example: input set is {a,b}, with DFA`Z2
1. Initially partition consists of the two groups 

•non-final states {A, B, C, D}, 
•final state{E}

2. , group {E} cannot be split
3. group {A, B, C, D} can be split into 

{A, B, C}{D}, and 
IInew for this round is {A, B, C){D){E}.

In the next round, split {A, B, C} into {A, C}{B}, since A and C each go to a 
member of {A, B, C) on input b, while B goes to a member of another group, 
{D}. Thus, after the second round, new = {A, C} {B} {D} {E).

For the third round, we cannot split the one remaining group with more than
one state, since A and C each go to the same state (and therefore to the same
group) on each input.  final = {A, C}{B){D){E). The minimum-state of the 
given DFA has four states.



Minimized DFA 

E

D
A

b
a B

a

b
a

bb

a



Compiler Construction Tools 
Parser Generators :  Produce Syntax Analyzers

Scanner Generators :  Produce Lexical 
Analyzers <= Lex (Flex)

Syntax-directed Translation Engines :  Generate 
Intermediate Code <= Yacc (Bison)

Automatic Code Generators :  Generate Actual 
Code

Data-Flow Engines :  Support Optimization


