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Lexical Analyzer




Topics Covered

n Tokens

n Attribute

n Patterns

n Lexemes

n Regular Expressions




Introduction

n Informal sketch of lexical analysis
— Identifies tokens in input string

n Issues In lexical analysis
— Lookahead
— Ambiguities
n Specifying lexemes
N — Regular expressions
l — Examples of regular expressions




Lexical Analyzer

n Functions
— Grouping Input characters into tokens
— Stripping out comments and white spaces

— Correlating error messages with the source
program

n Issues (why separating lexical analysis from
parsing)
— Simpler design

B - Compiler efficiency

l — Compiler portability (e.g. Linux to Win)




he Role of a Lexical Analyzer

pass token

and attribute value

<

get next

read char
ource | exical
rogram analyzer
put back
char I d
Read entire Symbol Table
program into
memory

Parser




Lexical Analysis

n The Input Is just a string of characters:
\tif(i==))\n\t\tz=0;\n\telse\n\t\tz =1,
n Goal: Partition input string into substrings
— Where the substrings are tokens




What’s a Token?

n A syntactic category
— In English:
n houn, verb, adjective, ...
— In a programming language:
n ldentifier, Integer, Keyword, Whitespace,




What are Tokens For?

n Classify program substrings according to
role

n Output of lexical analysis Is a stream of
tokens . . .which Is input to the parser
n Parser relies on token distinctions

— An identifier Is treated differently than a
keyword




Tokens

n Tokens correspond to sets of strings.

— ldentifier: strings of letters or digits, starting
with a letter

— Integer: a non-empty string of digits
— Keyword: “else” or “if” or “begin” or ...

— Whitespace: a non-empty sequence of blanks,
newlines, and tabs




Typical Tokens in a PL

n  Symbols: +,-,%[,=,<,>,->, ...

n Integer and Real (floating point) literals
123, 123.45

n  Char (string) literals

n ldentifiers

n  Comments

n White space

n  Keywords: If, while, struct, float, int, ...



Sample Lexemes

Pattern

If

If

If

Id

abc, n, count,...

letters+digit

NUMBER

3.14, 1000

numerical
constant

Tokens, Patterns and Lexemes
— Pattern: A rule that describes a set of strings
— Token: A set of strings In the same pattern
— Lexeme: The sequence of characters of a token
Token
T




Token Attribute

n E=C1*10
Token Attribute
ID Index to symbol table entry E
ID Index to symbol table entry C1
**
NUM 10




Lexical Error and Recovery

Error detection
Error reporting

n Error recovery

— Delete the current character and restart
scanning at the next character

— Delete the first character read by the scanner
and resume scanning at the character

following It.




Specification of Tokens

n Regular expressions are an Important
notation for specifying lexeme patterns.
While they cannot express all possible
patterns, they are very effective In
specifying those types of patterns that we
actually need for tokens.




as letters, digits, and punctuation.
— The set {0,1) is the binary alphabet

— If x and y are strings, then the concatenation of x
and v Is also string, denoted xy, For example, if
X =dog and y = house, then xy = doghouse.

— The empty string is the identity under
concatenation; that is, for any string s, ES = SE =

S,
]

Strings and Languages
n An alphabet Is any finite set of symbols such




Strings and Languages (cont.)

n A string over an alphabet Is a finite
sequence of symbols drawn from that
alphabet.

— In language theory, the terms "sentence" and
"word" are often used as synonyms for "string."

— |s| represents the length of a string s, EX: banana
IS a string of length 6

] — The empty string, is the string of length zero.




Strings and Languages (cont.)

n A language is any countable set of strings
over some fixed alphabet.

Def. Let X be a set of characters. A language
overXis a set of strings of characters drawn
from X

E N LEt L — {A, Ce ey Z}, then{“A”,”B”,”C”,
I “BF”...,”ABZ”,...] is consider the language
N

defined by L
n Abstract languages like @, the empty set, or

{c},the set containing only the empty string,
are languages under this definition.




Terms for Parts of Strings

The following string-related terms are commonly used:

1. A prefiz of string s is any string obtained by removing zero or more
symbols from the end of s. For example, ban, banana, and € are
prefixes of banana.

2. A suffiz of string s is any string obtained by removing zero or more
symbols from the beginning of s. For example, nana, banana, and e
are suffixes of banana.

3. A substring of s is obtained by deleting any prefix and any suffix
from s. For instance, banana, nan, and e are substrings of banana.

4. The proper prefixes, suffixes, and substrings of a string s are those,
prefixes, suffixes, and substrings, respectively, of s that are not € or
not equal to s itself.

5. A subsequence of s is any string formed by deleting zero or more
not necessarily consecutive positions of s. For example, baan is a
subsequence of banana.




Operations on Languages

OPERATION | DEFINITION AND NOTATION
Union of L and M LUM={s|sisin Lorsisin M}
Concatenation of L and M | LM = {st | sisin L and ¢ is in M}
Kleene closure of L L* =u, L
Positive closure of L L* —Uml L
Example:

Let L be the set of letters {A,B,...,Z,a,b,...,z)and

let D be the set of digits {0,1,.. .9).

L and D are, respectively, the alphabets of uppercase and lowercase
letters and of digits.

other languages can be constructed from L and D, using the operators
Illustrated above




Operations on Languages

strictly speaking the language wit
(52+10) strings of length one, eac
strings Is either one letter or one c

2. LD is the set of 520 strings of len

one digit.(10x52).
Ex: Al, al,B0,etc
3. L% is the set of all 4-letter strings.

g bcef)

(cont.)

1. L U D is the set of letters and digits -

N 62
N of which

IgIt.
gth two,

each consisting of one letter followed by

(ex: aaba,



Operations on Languages (cont.)

4. L is the set of all strings of letters,
Including e, the empty string.

5. L(L U D)” is the set of all strings of letters
and digits beginning with a letter.

6. D* Is the set of all strings of one or more
digits.




Regular Expressions

n  The standard notation for regular languages is regular expressions.

n  Atomic regular expression:
* Single character

er={re)
+ Epsilon
£ :{IIIIJ_

n  Compound regular expression:

Union

A+B:{.5' sedorse B}

* Concatenation

AB ={ab|ae A and be B}

* Tteration

4 =1J_ A4 where 4" =4.itimes ...4




Cont.

L(e) = {""}

L('c") = {"ec"}

L(A+B) = L(AL(B)

L(ARB) = {ablae L(A) and be L(B)}
I(A4) = [_]':::E_L{AI]

larger regular expressions are built from smaller ones. Let r and s are regular
expressions denoting languages L(r) and L(s), respectively.

1. (r) | (s) is a regular expression denoting the language L(r) U L(s).

2. (r) (s) is a regular expression denoting the language L(r) L(s) .

3. (r) * is a regular expression denoting (L (r)) * .

4. (r) is a regular expression denoting L(r). This last rule says that we can

add additional pairs of parentheses around expressions without changing

the language they denote.

for example, we may replace the regular expression (a) | ((b) ™ (c)) by a| b™c.




Examples

Example 3.4: Let ¥ = {a,b}.

1. The regular expression a|b denotes the language {a, b}.

2. (alb)(a[b) denotes {aa, ab, ba, bb}, the language of all strings of length two
over the alphabet ¥. Another regular expression for the same language is
aa|ab|bal|bb.

3. a” denotes the language consisting of all strings of zero or more a’s, that
is, {€,a,aa,aaaq,...}.

4. (a|b)* denotes the set of all strings consisting of zero or more instances
of a or b, that is, all strings of a’s and b’s: {€, a, b, aqa, ab, ba, bb, aaa, ... }.
Another regular expression for the same language is (a*b*)*.

5. ala*b denotes the language {a, b, ab,aab,aaab, ...}, that is, the string a
and all strings consisting of zero or more a’s and ending in b.




Regular Definition

C identifiers are strings of letters, digits, and
underscores. The regular definition for the
language of C identifiers.
—~ Letter 2A|B|C|...| Z]a|b]... |z -
— digit > 0]1]2]... | 9
— 1d > letter( letter | digit )*
o Unsigned numbers (integer or floating point)
are strings such as 5280, 0.01234, 6.336E4,
or 1.89E-4. The regular definition
— digit > 0]1]2]... | 9
— digits - digit digit*
B opt!onaIFraction - .digits | ¢ N

— optionalExponent 2 (E( + |- | &) digits) | €
l — number -2 digits optionalFraction optionalExponent




RECOGNITION OF TOKENS

*Given the grammar of branching statement:

stmt — if ezpr then stmt The terminals of the grammar, which are
| if ezpr then stmt else stmt if, then, else, relop, id, and number, are
| e the names of tokens as used by the lexical
expr — term relop term analyzer.
| term i :
term  —  id The lexical analyzer also has the job of
| number stripping out whitespace, by recognizing
«The patterns for the given tokens: the "token™ ws defined by:
digit — [0-9]
digits —  digit™ .
number — digits (. digits)? ( E [+-]7 digits)?  °  ( Plank | tab | newline )*
letter — [A-Za-z]
id — letter ( letter | digit )*
if — if
then — then
else — else
relop = < |>|<=[>]=]

r? is equivalent to r|e




Tokens, their patterns, and attribute values

LEXEMES TOKEN NAME | ATTRIBUTE VALUE
Any ws - =
if if -
then then —
else else -
Any id id Pointer to table entry
Any number number Pointer to table entry
< relop LT
<= relop LE
= relop EQ
<> relop NE
> relop GT
>= relop GE




Recognition of Tokens: Transition Diagram

Ex RELOP=<|<=|=|<>|>|>=

2

> "3
W\ #
4

return(relop,EQ)

other q #

# indicates input retraction

return(relop,LE)

return(relop,NE)

return(relop,LT)

return(relop,GE)

return(relop,GT)



Recognition of ldentifiers

n  Ex2: 1D = letter(letter | digit) *

Transition Diagram:
letter or digit

other #

start letter
G
return(id)

B #indicates Input retraction




Mapping transition diagrams into C code

letter or digit

start letter other

9 _. . [ 11 | return(id)

switch (state) {

case 9:

If (isletter( c) ) state = 10; else state =
failure();

break;
case 10: ¢ = nextchar();

If (isletter( c) || isdigit( c) ) state = 10; else state 11
case 11: retract(1); insert(id); return;




L_exical analyzer loop

Token nexttoken() {

while (1) {

switch (state) {

case 0: ¢ = nextchar();
If (c Is white space) state = 0;
else if (c == ‘<*) state = 1;
else if (c == ‘=*) state = 5;

case 9: ¢ = nextchar();
If (isletter( c) ) state = 10; else state =fail();
break;

case 10:

case 11: retract(1); insert(id);
return;




Recognition of Reserved Words

e Install the reserved words in the symbol table initially.
A field of the symbol-table entry indicates that these
strings are never ordinary identifiers, and tells which
token they represent.

 Create separate transition diagrams for each
keyword; the transition diagram for the reserved
word then

start »O t h | -O e .-O n nonlet/dig : "




The transition diagram for token number

Multiple accepting state

4 4
Accepting integer Accepting float Accepting float
e.g. 12 e.g. 12.31 e.g. 12.31E4




RE with multiple accepting states

n Two ways to implement:

— Implement it as multiple regular expressions.

each with its own start and accepting states. Starting with
the longest one first, if failed, then change the start state to

a shorter RE, and re-scan. See example of Fig. 3.15 and 3.16
In the textbook.

— Implement it as a transition diagram with multiple
accepting states.

When the transition arrives at the first two accepting states,
just remember the states, but keep advancing until a failure
] IS occurred. Then backup the input to the position of the last

l accepting state.




Lexical Analyzer Generator

n Lexical analyzer generator Is to transform
RE Into a stade transition table (i.e. Finite
Automation)

n Theory of such tralsformation
n Some practical consideration




Finite Automata

n Transition diagram is finite automation

n Nondeterministic Finite Automation (NFA)
— A set of states
— A set of input symbols

— A transition function, move(), that maps state-
symbol pairs to sets of states.

— A start state S,
= — A set of states F as accepting (Final) states.




Example

(7
O OO

W

The set of states = {0,1,2,3}
Input symbol = {a,b}
Start state 1s SO, accepting state is S3




Transition Function

n  Transition function can be implemented as a
transition table.

State Input Symbol
a b

0 {0,1} {0}

1 - {2}

2 - {3}




Simulation of NFA

n  Given an NFA N and an input string x, determine whether N
accepts x

S:=e-closure({s0}) ; a:=nextchar;

While a <> eof do begin e
S:=e-closure(move(S
a.= nextchar;

end start

If (an accepting statesin S

return(yes)

otherwise return (no)




Computing the e-closure (T)

push all states of T onto stack;
initialize e-closure(T) to T;
while ( stack is not empty ) {
pop t, the top element, oft stack;
for ( each state u with an edge from ¢ to u labeled € )
if ( u is not in e-closure(T) ) {
add u to e-closure(T);
push u onto stack;




— ThE language defined by an NFA is the set of
strings It accepts

Deterministic Finite Automata (DFA)
A DFA is a special case of NFA in which
— There Is no e-transition
— Always have unique successor states.

n  Non-deterministic Finite Automata (NFA)

— An NFA accepts an input string x iff there is a
path in the transition graph from the start state
to some accepting (final) states.

n
n
T



s = s0; ¢ := nextchar;
while ( ¢ <> eof) do

S := move(s, C);

C .= nextchar;
end
If (s in F) then return “yes”

@

start @_@_L@_L 3
-




Regular Expression to NFA (1)

e For each kind of RE, there is a corresponding NFA To
convert any regular expression to a NFA that defines the
same language.

* The algorithm is syntax-directed, in the sense that it
works recursively up the parse tree for the regular
expression.

* For each sub-expression the algorithm constructs an
NFA with a single accepting state.




n  INPUT: A regular expression r over alphabet X.

n OUTPUT: An NFA N accepting L(r).

n Method: Begin by parsing r into its constituent sub-expressions. The
rules for constructing an NFA consist of basis rules for handling sub-
expressions with no operators, and inductive rules for constructing
larger NFA's from the NFA's for the immediate sub-expressions of a

given expression.
— For expression e construct the NFA

stan-: E@

— For any sub-expression a in C, construct the

NFA .
O—~©




RE to NFA (cont.)
n NFA for the union of two regular
expressions
n Ex:alb
N



NFA for the closure of a regular expression




Example: Constructing NFA for regular expression
r=(alb)*abb

Step 1: construct a, b

Step 2: constructing a| b
Step3: construct (alb)*
Step4: concat it with a, then, b, then b







Conversion algorithm: subset construction

— The idea is that each DFA state corresponds to a
set of NFA states.

After reading input al, a2, ..., an, the DFAIsIn a
state that represents the subset T of the states of
the NFA that are reachable from the start state.

Conversion of NFA to DFA
Why?
— DFA is difficult to construct directly from RE’s
— NFA is difficult to represent in a computer
program and inefficient to compute
]



Subset Construction Algorithm

Dstates := e-closure (sg)
While there is an unmarked state T in Dstates do
begin
mark T;
for each input symbol a do
begin
U :=e-closure ( move(T,a) );
If U is not in Dstates then
add U as an unmarked state to Drtates;
Dtran [T, a] := U;
end
end




Example NFA to DFA
n  The start state A of the equivalent DFA is e-closure(0),
- A={0,1,2,4,7},
n since these are exactly the states reachable from state O via a path all of
whose edges have label €. Note that a path can have zero edges, so state
0 is reachable from itself by an ¢ -labeled path.
n  The input alphabet is {a, b). Thus, our first step is to mark A and
compute
Dtran[A, a] = ¢ -closure(moue(A, a)) and
I Dtran[A, b] = € - closure(moue(A, b)) .

n Among the states 0, 1, 2, 4, and 7, only 2 and 7 have transitions on a, to 3
and 8, respectively. Thus

move(A, a) = {3,8). Also, ¢ -closure({3,8} )={1,2,3,4,6,7,8), so we
conclude call this set B,

Dtran[A, a] = e-closure(move(A, a)) = e-closure({3,8}) = {1,2,3,4,6,7,8}

let Dtran[A, a] =



NFA to DFA (cont.)

n compute Dtran[A, b]. Among the states in A, only 4 has a transition on
b, and it goes to 5.

Ditran[A, b] = e-closure({5}) = {1,2,4,6,7}
n CallitC

n  If we continue this process with the unmarked sets B and C, we
eventually reach a point where all the states of the DFA are marked.

{1,2,4,5,6,7,9}

B 1235067, 10}

igure 3.35: Transition table Dtran for DFA D

NFA STATE DFA STATE | a | b
{0,1,2,4,7} A B|C b

{1,2,3,4,6,7,8} B B|D
{1,2,4,5,6,7} C B | C start a

D B | E

E B | C




EX(2) NFA to DFA conversion

a
start
—@—@— :
(0,a) = {0,1} New states
(0,b) = {0} a b
({0,1},a) = {0,13  A=10} A B A
({0,1},b)={0,2y B=101} 5 - =
({0,2},a)={0,13  C©=10.2}
{02}, b)={03} D= {0,3} C B D
D B A




NFA to DFA conversion (cont.)

ou
a/

a

A B

B B

C B

D B

D




NFA to DFA conversion (cont.)
< >a
& O a
2
: b
How about e-transition?

Due to e-transitions, we must compute e-closure(S) which
IS the set of NFA states reachable from NFA state S on
T e-transition, and e-closure(T) where T is a set of NFA states.

lExampIe: e-closure (0) = {1,3}

start

@r




Example

start @_a]b_

Dstates := e-closure(1) = {1,2}
U:= e-closure (move( {1,2}, a)) =

{3.4,5} A{l,2}

Add {3,4,5} to Dstates B{3,4,5}
U:= s-closure (move( {1,2}, b)) = {} -

B &-closure (move( {3,4,5}, a)) = {5} C{4,5}

e-closure (move( {3,4,5}, b)) = {45} [ pr5)

g-closure (move( {4,5}, a)) = {5}
g-closure (move( {4,5}, b)) = {5}




DFA after conversion

a b
A{1,2} B
B{3,4,5} |D C
C{4,5} D D
D{5}

start

Q



we would generally prefer a DFA with as few
states as possible, since each state requires
entries in the table that describes the lexical
analyzer.

There Is always a unigue minimum state
DFA for any regular language. Moreover,
this minimum-state DFA can be constructed

I |
o= from any DFA for the same language by

Minimization of DFA
n 1T we iImplement a lexical analyzer as a DFA,

grouping sets of equivalent states.



Algorithm 3.39 : Minimizing the number of states of a DFA.

INPUT: A DFA D with set of states S, input alphabet %, start state 0, and
set of accepting states F.

OUTPUT: A DFA D' accepting the same language as D and having as few
states as possible.

METHOD:

1. Start with an initial partition II with two groups, F and S — F, the
accepting and nonaccepting states of D.

2. Apply the procedure of Fig. 3.64 to construct a new partition ITnew.

initially, let yew = II;
for ( each group G of Il ) {
partition G into subgroups such that two states s and ¢
are in the same subgroup if and only if for all
input symbols a, states s and ¢ have transitions on a
to states in the same group of II;
/* at worst, a state will be in a subgroup by itself */
replace G in ey by the set of all subgroups formed;




3. If Myew = I, let Mgna; = IT and continue with step (4). Otherwise, repeat
step (2) with Ilpew in place of II.

4. Choose one state in each group of Ilgna as the representative for that
group. The representatives will be the states of the minimum-state DFA
D'. The other components of D' are constructed as follows:

(a) The state state of D' is the representative of the group containing
the start state of D.

(b) The accepting states of D' are the representatives of those groups
that contain an accepting state of D. Note that each group contains
either only accepting states, or only nonaccepting states, because we
started by separating those two classes of states, and the procedure
of Fig. 3.64 always forms new groups that are subgroups of previously
constructed groups.

(c) Let s be the representative of some group G of g, and let the
transition of D from s on input a be to state t. Let r be the rep-
resentative of t’s group H. Then in D', there is a transition from s
to r on input a. Note that in D, every state in group G must go to
some state of group H on input a, or else, group G would have been
split according to Fig. 3.64.

Step 2




Example: input set is {a,b}, with DFA Z2

: 1. Initially partition consists of the two groups

enon-final states {A, B, C, D},
/

§

1., for this round is {A, B, C){D){E.

| @ ofinal state{E}

| 2.To construct T,eq + 9rOUP {E} cannot be split

¢ 3. group {A, B, C, D} can be split into
art b {A, B, CH{D}, and
—(4) B

N

In the next round, split {A, B, C} into {A, CHB}, since Aand C eachgoto a
member of {A, B, C) on input b, while B goes to a member of another group,
{D}. Thus, after the second round, IT,.,, = {A, C} {B} {D} {E).

For the third round, we cannot split the one remaining group with more than
one state, since A and C each go to the same state (and therefore to the same

group) on each input. I 4,5 = {A, CH{B){D){E). The minimum-state of the
given DFA has four states.




Minimized DFA

STATE | a | b
A B| A
B B | D
D B | FE
E B | A




Compiler Construction Tools

Parser Generators : Produce Syntax Analyzers

Scanner Generators : Produce Lexical
Analyzers <= Lex (Flex)

Syntax-directed Translation Engines . Generate
Intermediate Code <= vacc (Bison)

Automatic Code Generators : Generate Actual
Code

Data-Flow Engines : Support Optimization




