
Compiler Design

Lecture-4

Introdution to Lexical Analysis

Topics Covered

n Approaches to implement a lexical
analyzer

n The role of the lexical analyzer
n Transition Diagram
n Finite Automata

Section 0 Approaches to implement
a lexical analyzer

1. Simple approach
– Construct a diagram that illustrates the

structure of the tokens of the source
language , and then to hand-translate the
diagram into a program for finding tokens

Notes: Efficient lexical analyzers can be
produced in this manner

Section 0 Approaches to implement
a lexical analyzer
2. Pattern-directed programming approach

– Pattern Matching technique
– Specify and design program that execute

actions triggered by patterns in strings
– Introduce a pattern-action language called

Lex for specifying lexical analyzers
• Patterns are specified by regular

expressions
• A compiler for Lex can generate an

efficient finite automation recognizer for
the regular expressions

First phase of a compiler
1. Main task

– To read the input characters
– To produce a sequence of tokens used by

the parser for syntax analysis
– As an assistant of parser

The role of the lexical analyzer
2. Interaction of lexical analyzer with parser

Lexical
analyzer

Parser

Symbol
table

Source
program

token

Get next
token

The role of the lexical analyzer
3. Processes in lexical analyzers

– Scanning
• Pre-processing

– Strip out comments and white space
– Macro functions

– Correlating error messages from compiler
with source program
• A line number can be associated with an

error message
– Lexical analysis

CHAPTER 3 LEXICAL ANALYSIS
Section 1 The role of the lexical

analyzer
4. Terms of the lexical analyzer

–Token
• Types of words in source program
• Keywords, operators, identifiers, constants, literal
strings, punctuation symbols(such as
commas,semicolons)

–Lexeme
• Actual words in source program
–Pattern
• A rule describing the set of lexemes that can
represent a particular token in source program

• Relation {<.<=,>,>=,==,<>}

The role of the lexical analyzer
5. Attributes for Tokens

–A pointer to the symbol-table entry in which
the information about the token is kept

E.g E=M*C**2
<id, pointer to symbol-table entry for E>
<assign_op,>
<id, pointer to symbol-table entry for M>
<multi_op,>
<id, pointer to symbol-table entry for C>
<exp_op,>
<num,integer value 2>

The role of the lexical analyzer
6. Lexical Errors

– Deleting an extraneous character
– Inserting a missing character
– Replacing an incorrect character by a

correct character
– Transposing two adjacent characters(such

as , fi=>if)
– Pre-scanning

The role of the lexical analyzer

7. Input Buffering
– Two-buffer input scheme to look ahead on

the input and identify tokens
– Buffer pairs
– Sentinels(Guards)

Specification of Tokens

1. Regular Definition of Tokens
– Defined in regular expression
e.g. Id  letter(letter|digit)

letter A|B|…|Z|a|b|…|z
digit 0|1|2|…|9

Notes: Regular expressions are an important
notation for specifying patterns. Each
pattern matches a set of strings, so
regular expressions will serve as as names
for sets of strings.

Specification of Tokens
2. Regular Expression & Regular language

– Regular Expression
• A notation that allows us to define a pattern

in a high level language.
– Regular language

• Each regular expression r denotes a
language L(r) (the set of sentences relating
to the regular expression r)

Notes: Each word in a program can be
expressed in a regular expression

Specification of Tokens
3. The rule of regular expression over

alphabet 
1)  is a regular expression that denote {}

•  is regular expression
• {} is the related regular language

2) If a is a symbol in , then a is a regular
expression that denotes {a}

• a is regular expression
• {a} is the related regular language

Specification of Tokens
3. The rule of regular expression over

alphabet 
3) Suppose  and  are regular expressions,

then |, , * , * is also a regular
expression

Notes: Rules 1) and 2) form the basis of the
definition; rule 3) provides the inductive step.

Specification of Tokens

4. Algebraic laws of regular expressions
1) |= |

2) |(|)=(|)| () =( )
3) (|)=  |  (|)= | 
4)  =  = 
5)(*)*=*
6) *=＋| ＋ ＝  * = *
7) (|)*= (* | *)*= (* *)*

Specification of Tokens

4. Algebraic laws of regular expressions
8) If L(),then

= |   = * 

= |   =  *

Notes: We assume that the precedence of *
is the highest, the precedence of | is the
lowest and they are left associative

Specification of Tokens
5. Notational Short-hands

a)One or more instances
(r)+ digit+

b)Zero or one instance
r? is a shorthand for r| (E(+|-)?digits)?

c)Character classes
[a-z] denotes a|b|c|…|z
[A-Za-z] [A-Za-z0-9]

Recognition of Tokens

1. Task of recognition of token in a lexical
analyzer

– Isolate the lexeme for the next token in the
input buffer

– Produce as output a pair consisting of the
appropriate token and attribute-value, such
as <id,pointer to table entry> , using the
translation table given in the Fig in next
page

Recognition of Tokens

1. Task of recognition of token in a lexical
analyzer

Regular
expression

Token Attribute-
value

if if -
id id Pointer to

table entry
< relop LT

Recognition of Tokens
2. Methods to recognition of token

– Use Transition Diagram

CHAPTER 3 LEXICAL
ANALYSIS
Section 3 Recognition of Tokens

3. Transition Diagram(Stylized flowchart)
– Depict the actions that take place when a

lexical analyzer is called by the parser to
get the next token

start
0 6 7

8

return(relop,GE)

return(relop,GT)
*

> =

otherStart
state

Accepting
state

Notes: Here we use ‘*’ to indicate states on which input
retraction must take place

Recognition of Tokens
4. Implementing a Transition Diagram

– Each state gets a segment of code

– If there are edges leaving a state, then its
code reads a character and selects an edge
to follow, if possible

– Use nextchar() to read next character from
the input buffer

Recognition of Tokens
4. Implementing a Transition Diagram

while (1) {
switch(state) {
case 0: c=nextchar();

if (c==blank || c==tab || c==newline){
state=0;lexeme_beginning++}

else if (c== ‘<‘) state=1;
else if (c==‘=‘) state=5;
else if(c==‘>’) state=6 else state=fail();
break

case 9: c=nextchar();
if (isletter(c)) state=10;
else state=fail(); break

… }}}

Recognition of Tokens

5. A generalized transition diagram

Finite Automation
– Deterministic or non-deterministic FA

– Non-deterministic means that more than
one transition out of a state may be possible
on the the same input symbol

Recognition of Tokens

i f d 2 =…

FA simulator

Input buffer

Lexeme_beginning

6. The model of recognition of tokens

Recognition of Tokens
E.g：The FA simulator for Identifiers is:

– Which represent the rule:
identifier=letter(letter|digit)*

1 2letter
letter

digit

Finite automata

1. Usage of FA
– Precisely recognize the regular sets
– A regular set is a set of sentences relating

to the regular expression
2. Sorts of FA

– Deterministic FA
– Non-deterministic FA

Finite automata
3. Deterministic FA (DFA)

DFA is a quintuple, M(S,,move,s0,F）
– S: a set of states
– : the input symbol alphabet
– move: a transition function, mapping from

S  to S, move(s,a)=s’
– s0: the start state, s0 ∈ S
– F: a set of states F distinguished as

accepting states, FS

Finite automata
3. Deterministic FA (DFA)
Note: 1) In a DFA, no state has an -

transition;
2)In a DFA, for each state s and input

symbol a, there is at most one edge
labeled a leaving s

3)To describe a FA,we use the
transition graph or transition table

4)A DFA accepts an input string x if
and only if there is some path in the
transition graph from start state to some
accepting state

e.g. DFA M=({0,1,2,3},{a,b},move,0,{3})
Move: move(0,a)=1 m(0,b)=2 m(1,a)＝3 m(1,b)
＝2

m(2,a)=1 m(2,b)=3 m(3,a)＝3 m(3,b)＝3
Transition table

input

state

a b

0 1 2
1 3 2
2 1 3
3 3 3

1
a a

0 3

2
b

b a

b

a

b

Transition graph

E.g. Construct a DFA M，which can accept
the strings which begin with a or b, or begin
with c and contain at most one a。

0

1

a b

b

c a

2c

c

b

3a

c

b

So ,the DFA is
M=({0,1,2,3,},{a,b,c},move,0,{1,2,3})

move：move(0,a)=1 move(0,b)=1
move(0,c)=1 move(1,a)=1
move(1,b)=1 move(1,c)=1
move(2,a)=3 move(2,b)=2
move(2,c)=2 move(3,b)=3
move(3,c)=3

Finite automata
4. Non-deterministic FA (NFA)

NFA is a quintuple, M(S,,move,s0,F）
– S: a set of states
– : the input symbol alphabet
– move: a mapping from S  to S,

move(s,a)=2S, 2S S
– s0: the start state, s0 ∈ S
– F: a set of states F distinguished as

accepting states, FS

Finite automata
4. Non-deterministic FA (NFA)

Note:1) In a NFA,the same character can label
two or more transitions out of one state;

2) In a NFA, is a legal input symbol.
3) A DFA is a special case of a NFA
4)A NFA accepts an input string x if and

only if there is some path in the transition
graph from start state to some accepting state.
A path can be represented by a sequence of
state transitions called moves.

5)The language defined by a NFA is the set
of input strings it accepts

e.g. An NFA M＝
({q0,q1},{0,1},move,q0,{q1})

input
State

0 1

q0 q0 q1

q1 q0， q1 q0

q0 q1

1
1
0

0

0

The language defined by the NFA is
0*10*|0*10*((1|0)0*10*)*

Finite automata
5. Conversion of an NFA into a DFA
a)Reasons to conversion

Avoiding ambiguity
b)The algorithm idea

Subset construction: The following
state set of a state in a NFA is thought
of as a following STATE of the state in
the converted DFA

Finite automata
5. Conversion of an NFA into a DFA
c)The pre-process-- -closure(T)

Obtain -closure(T) T S
(1) -closure(T) definition

A set of NFA states reachable from NFA
state s in T on -transitions alone

Finite automata
5. Conversion of an NFA into a DFA
c)The pre-process--- -closure(T)

(2)-closure(T) algorithm
push all states in T onto stack;
initialize -closure(T) to T;
while stack is not empty do {

pop the top element of the stack into t;
for each state u with an edge from t to u

labeled  do
{
if u is not in -closure(T) {

add u to -closure(T)
push u into stack}}}

CHAPTER 3 LEXICAL ANALYSIS
Section 4 Finite automata
5. Conversion of an NFA into a DFA
d)Subset Construction algorithm

– Input. An NFA N=(S,,move,S0,Z)
– Output. A DFA D= (Q,,,I0,F), accepting the

same language

Finite automata
5. Conversion of an NFA into a DFA
d)Subset Construction algorithm

(1)I0＝ -closure(S0), I0 ∈Q
(2)For each Ii , Ii ∈Q,

let It= -closure(move(Ii,a))
if It Q, then put It into Q

(3)Repeat step (2), until there is no new state
to put into Q

(4)Let F={I | I ∈ Q,且I ∩ Z <>}

1 y 2x

a
5 

b

a
 6 

a

b b

3

4

a

b

e.g.

I5={5,1,4,6,y}I3={5,3,2,1,6,y}I6={5,3,1,6,y}
I4={5,4,1,2,6,y}I6={5,3,1,6,y}I5={5,1,4,6,y}
I4={5,4,1,2,6,y}I6={5,3,1,6,y}I4={5,4,1,2,6,y}
I5={5,1,4,6,y}I3={5,3,2,1,6,y}I3={5,3,2,1,6,y}
I4={5,4,1,2,6,y}I1={5,3,1}I2={5,4,1}
I2={5,4,1}I3={5,3,2,1,6,y}I1={5,3,1}
I2={5,4,1}I1={5,3,1}I0={x,5,1}

baI

I a b
I0 I1 I2

I1 I3 I2

I2 I1 I4

I3 I3 I5

I4 I6 I4

I5 I6 I4

I6 I3 I5

DFA is

I0

I1

I2

I3

I4 I6

I5a
b a

a

a b
a

b
b

b

b

b

a

Finite automata
5. Conversion of an NFA into a DFA
d)Subset Construction algorithm

Notes:
1)Both DFA and NFA can recognize precisely
the regular sets;
2)DFA can lead to faster recognizers
3)DFA can be much bigger than an equivalent
NFA

Finite automata
6. Minimizing the number of States of a DFA

a)Basic idea
Find all groups of states that can be distinguished
by some input string. At beginning of the process,
we assume two distinguished groups of states:
the group of non-accepting states and the group
of accepting states. Then we use the method of
partition of equivalent class on input string to
partition the existed groups into smaller groups .

Finite automata
6. Minimizing the number of States of a DFA
b)Algorithm

– Input. A DFA M={S,,move, s0,F}
– Output. A DFA M’ accepting the same

language as M and having as few states as
possible.

Finite automata
6. Minimizing the number of States of a DFA
b)Algorithm

(1)Construct an initial partition ∏ of the set of
states with two groups: the accepting states F
and the non-accepting states S-F. ∏0＝{I01,I02}

Finite automata
6. Minimizing the number of States of a DFA
b)Algorithm

(2) For each group I of ∏i ,partition I into
subgroups such that two states s and t of I are
in the same subgroup if and only if for all input
symbols a, states s and t have transitions on a
to states in the same group of ∏i ; replace I in
∏i+1_by the set of subgroups formed.

Finite automata
6. Minimizing the number of States of a DFA
b)Algorithm

(3) If ∏i+1 =∏i ,let ∏final =∏i+1 and continue with
step (4). Otherwise,repeat step (2) with ∏i+1

(4) Choose one state in each group of the
partition ∏final as the representative for that
group. The representatives will be the states of
the reduced DFA M’. Let s and t be
representative states for s’s and t’s group
respectively, and suppose on input a there is a
transition of M from s to t. Then M’ has a
transition from s to t on a.

Finite automata
6. Minimizing the number of States of a DFA
b)Algorithm

(5) If M’ has a dead state(a state that is not
accepting and that has transitions to itself on all
input symbols),then remove it. Also remove
any states not reachable from the start state.

Finite automata
6. Minimizing the number of States of a DFA
b)Algorithm

Notes: The meaning that string w distinguishes
state s from state t is that by starting with the
DFA M in state s and feeding it input w, we end
up in an accepting state, but starting in state t
and feeding it input w, we end up in a non-
accepting state, or vice versa.

e.g. Minimize the following DFA.

0

1

2

3

5

4

6

a
a

a
a

a

aa

b b

b
b

b

b

b

1. Initialization: ∏0＝{{0,1,2},{3,4,5,6}}
2.1 For Non-accepting states in ∏0 :
– a: move({0,2},a)={1} ; move({1},a)={3} . 1,3 do

not in the same subgroup of ∏0.
– So ,∏1`＝{{1}，{0,2}，{3,4,5,6}}
– b: move({0},b)={2}; move({2},b)={5}. 2,5 do

not in the same subgroup of ∏1‘.
– So, ∏1``＝{{1}，{0}，{2}，{3,4,5,6}}

2.2 For accepting states in ∏0 :
– a: move({3,4,5,6},a)={3,6}, which is the subset

of {3,4,5,6} in ∏1“
– b: move({3,4,5,6},b)={4,5}, which is the subset

of {3,4,5,6} in ∏1“
– So, ∏1＝{{1}，{0}，{2}，{3,4,5,6}}.

3.Apply the step (2) again to ∏1 ,and get ∏2.
– ∏2＝{{1},{0},{2},{3,4,5,6}}= ∏1 ,
– So, ∏final = ∏1

4. Let state 3 represent the state group
{3,4,5,6}

So, the minimized DFA is :

0

1

2

a
a

b
b 3

a a

b b

Regular expression to an NFA
1.The reasons about regular expression to a

NFA
Strategy for building a recognizer from a
regular expression is to construct an NFA
from a regular expression and then to
simulate the behavior of the NFA on an
input string.

Regular expression to an NFA
2. Construction of an NFA from a regular

expression
a)Basic idea

Syntax-directed in that it uses the
syntactic structure of the regular
expression to guide the construction
process.

Regular expression to an NFA
2. Construction of an NFA from a regular

expression
a)Algorithm
– Input. A regular expression r over an

alphabet 
– Output. An NFA N accepting L(r)

Regular expression to an NFA
2. Construction of an NFA from a regular

expression
a)Algorithm
– Method
(1) Parse r into its constituent sub-expressions.
(2) Use rules in the next pages to construct

NFA’s for each of the basic symbols in
r(those that are either  or an alphabet
symbol).

(3)Use rules in the next and next page to
combine these NFA’s inductively, and obtain
the NFA for the entire expression.

Rules

2a1

1. For , 21

2. For a in ,

Rules

1

1 2
| 1 2



21

1 2
*

1 2 1‘

2 1‘



3. Rules for complex regular expressions

e.g. Let us construct N(r) for the regular
expression r=(a|b)*(aa|bb)(a|b)*

x y (a|b)*(aa|bb)(a|b)*

1 y
(a|b)* (a|b)*

2x
(aa|bb)

1 y 2x
aa

5 
bb

a|b
 6 

a|b

1 y 2x

a
5 

b

a
 6 

a

b b

3

4

a

b

FA to Regular expression

1. Basic ideas
Reduce the number of states by
merging states

2. Algorithm
– Input: An FA M
– Output: A regular expression r over an

alphabet  recognize the same language
as FA M

FA to Regular expression
2. Algorithm

– Method:
• Extend the concept of FA, let the arrows can be

marked by regular expressions.
• Add two nodes x,y to the FA M and get M’ that

recognize the same regular language.

x y
 FA

FA to Regular expression
2. Algorithm

– Method:
• Use the following rules to combine the regular

expression in the FA’s inductively, and obtain the
entire expression for the FA

1

1

1

1

1

3

2
|

2


2




3

1

2
* 

2

E.g. Construct the regular expression for
the following DFA M.

1
1

1

1
1

32

0

0 0 0 0

x

y





x

0 3
10|01

01|10

00|11
00|11

y





x 0 y 

00|11

(10|01)(00|11)*(01|10)

x y
((10|01)(00|11)*(01|10)|(00|11))*

Regular Grammar to an NFA

1. Basic properties
n For each regular grammar

G=(VN,VT,P,S), there is an FA
M=(Q,,f,q0,Z), and L(G)=L(M).

n For each FA M, there is a right-linear
grammar and a left-linear grammar
recognize the same language.
L(M)=L(GR)=L(GL)

Regular Grammar to an NFA
2. Right-linear grammar to FA

– Input :G=(VN,VT,P,S)
– Output : FA M=(Q, ,move,q0,Z)
– Method :

• Consider each non-terminal symbol in G
as a state, and add a new state T as an
accepting state.

• Let Q=VN∪{T} ,  ＝ VT , q0 ＝S; if there
is the production S  , then Z={S,T},
else Z={T} ;

Regular Grammar to an NFA
2. Right-linear grammar to FA

– Method :
• For each production, construct the

function move.
a) For the productions similar as A1  aA2，

construct move(A1,a)= A2.
b) For the productions similar as A1  a,

construct move(A1,a)= T.
c) For each a in , move(T,a)=, that

means the accepting states do not
recognize any terminal symbol.

E.g. A regular grammar
G=({S,A,B},{a,b,c},P,S) P: S aS |aB

BbB|bA
A cA|c

Construct a FA for the grammar G.

Answer: let M=(Q,,f,q0,Z)
1) Add a state T , So Q={S,B,A,T};  ={a,b,c};

q0=S; Z={T}.
2) f：

f(S,a)=S f(S,a)=B
f(B,a)=B f(B,b)=A
f(A,c)=A f(A,c)=T

B Ta cAS b
a b c

Regular Grammar to an NFA
3. FA to Right-linear grammar

– Input : M=(S ,,f, s0,Z)
– Output : Rg=(VN,VT,P,s0)
– Method :

• If s0Z, then the Productions are;
a) For the mapping f(Ai,a)=Aj in M, there is a

production AiaAj;
b) If Aj∈Z, then add a new production Aia，

then we get Aia|aAj;

Regular Grammar to an NFA

3. FA to Right-linear grammar
– Method :

• If s0∈Z, then we will get the following
productions besides the productions we’ve
gotten based on the former rule:

• For the mapping f(s0,)=s0, construct new
productions, s0

’  |s0, and s0
’ is the new

starting state.

e.g. construct a right-linear grammar for the
following DFA M=({A,B,C,D},{0,1},f,A,{B})

C
0 1

A

D
1

0
1

0|1

B

0

Answer:Rg=({A,B,C,D},{0,1},P,A)
A  0B | 1D | 0
B  1C | 0D
C  0B | 1D | 0
D  0D | 1D

L(Rg)=L(M)=0(10)*

Regular-exp Right-linear-Rg

FA

Design of a lexical analyzer
generator

1. Lexical analyzer generator
A software tool that automatically

constructs a lexical analyzer from related
language specification

2. Typical lexical analyzer generator
Lex

Design of a lexical analyzer
generator

3. Lex
a) Lexical analyzer generating tool

Lex compiler
b)Input specification

Lex language program

Design of a lexical analyzer
generator

3. Lex
c) The process that creates a lexical
analyzer with Lex
Lex source

program lex.l
Lex.yy.c

Lex.yy.c a.out

Input
stream

Sequence
of tokens

Lex compiler

C compiler

a.out

Design of a lexical analyzer
generator

3. Lex
d) Lex specification

A Lex program consists of three parts:
declaration
%%
translation rules
%%
auxiliary procedures

Design of a lexical analyzer
generator

3. Lex
d) Lex specification

(1)Declaration
Include declarations of variables,

manifest constants and regular definitions
Notes: A manifest constant is an

identifier that is declared to represent a
constant

Design of a lexical analyzer
generator

3. Lex
d) Lex specification

(1)Declaration
%{

/*definitions of manifest constants
LT,LE,EQ,GT,GE,IF,THEN,ELSE,ID*/

%}
/*regular expression*/

delim [\t\n]
ws {delim}+
letter [A-Za-z]
digit [0-9]
id {letter}({letter}|{digit})*

Design of a lexical analyzer
generator

3. Lex
d) Lex specification

(2)Translation Rules
p1 {action1} /*p—pattern(Regular exp)

*/
…

pn {actionn}
e.g {if} {return(IF);}

{id} {yylval=install_id();return(ID);}

Design of a lexical analyzer
generator

3. Lex
d) Lex specification

(3)auxiliary procedures
install_id() {
/* procedure to install the lexeme, whose first

character is pointed to by yytext and whose length
is yyleng, into the symbol table and return a
pointer thereto*/

}
Notes:The auxiliary procedures can be compiled
separately and loaded with the lexical analyzer.

Design of a lexical analyzer
generator

3. Lex
e) Model of Lex compiler

Lex
specification Lex compiler

Transition
table

Lexeme Input buffer

FA simulator

Transition
table DFA transition table

Look ahead pointer

