
Compiler Design



Lecture-4

Introdution to Lexical Analysis



Topics Covered

n Approaches to implement a lexical 
analyzer

n The role of the lexical analyzer
n Transition Diagram
n Finite Automata



Section 0 Approaches to implement 
a lexical analyzer

1.  Simple approach
– Construct a diagram that illustrates the 

structure of the tokens of the source 
language , and then to hand-translate the 
diagram into a program for finding tokens

Notes: Efficient lexical analyzers can be 
produced in this manner



Section 0 Approaches to implement 
a lexical analyzer
2.  Pattern-directed programming approach

– Pattern Matching technique
– Specify and design program that execute 

actions triggered by patterns in strings
– Introduce a pattern-action language called 

Lex for specifying lexical analyzers
• Patterns are specified by regular 

expressions
• A compiler for Lex can generate an 

efficient finite automation recognizer for 
the regular expressions



First phase of a compiler
1.  Main task

– To read the input characters 
– To produce a sequence of tokens used by  

the parser for syntax analysis
– As an assistant of parser



The role of the lexical analyzer
2. Interaction of lexical analyzer with parser

Lexical 
analyzer

Parser   

Symbol 
table

Source 
program

token

Get next 
token



The role of the lexical analyzer
3.  Processes in lexical analyzers

– Scanning
• Pre-processing

– Strip out comments and white space
– Macro functions

– Correlating error messages from compiler 
with source program
• A line number can be associated with an 

error message
– Lexical analysis



CHAPTER 3   LEXICAL ANALYSIS
Section 1  The role of the lexical 

analyzer
4.  Terms of the lexical analyzer

–Token
• Types of words in source program
• Keywords, operators, identifiers, constants, literal 
strings, punctuation symbols(such as 
commas,semicolons)

–Lexeme
• Actual words in source program
–Pattern
• A rule describing the set of lexemes that  can 
represent a particular token in source program

• Relation {<.<=,>,>=,==,<>}



The role of the lexical analyzer
5. Attributes for Tokens

–A pointer to the symbol-table entry in which 
the information about the token is kept

E.g E=M*C**2
<id, pointer to symbol-table entry for E>
<assign_op,>
<id, pointer to symbol-table entry for M>
<multi_op,>
<id, pointer to symbol-table entry for C>
<exp_op,>
<num,integer value 2>



The role of the lexical analyzer
6.  Lexical Errors

– Deleting an extraneous character
– Inserting a missing character
– Replacing an incorrect character by a 

correct character
– Transposing two adjacent characters(such 

as , fi=>if)
– Pre-scanning 



The role of the lexical analyzer

7.  Input Buffering
– Two-buffer input scheme to look ahead on 

the input and identify tokens
– Buffer pairs
– Sentinels(Guards)



Specification of Tokens

1.  Regular Definition of Tokens
– Defined in regular expression
e.g. Id  letter(letter|digit) 

letter A|B|…|Z|a|b|…|z
digit 0|1|2|…|9

Notes: Regular expressions are an important 
notation for specifying patterns. Each 
pattern matches  a set of strings, so 
regular expressions will serve as as names 
for sets of strings.



Specification of Tokens
2.  Regular Expression  & Regular language

– Regular Expression
• A notation that allows us to define a pattern 

in a high level language.
– Regular language

• Each regular expression r denotes a 
language L(r) (the set of sentences relating 
to the regular expression r)

Notes: Each word in a program can be 
expressed in a regular expression



Specification of Tokens
3. The rule of regular expression over 

alphabet 
1)  is a regular expression that denote {}

•  is regular expression
• {} is the related regular language

2) If  a is a symbol in , then a is a regular 
expression that denotes {a}

• a is regular expression
• {a} is the related regular language



Specification of Tokens
3. The rule of regular expression over 

alphabet 
3) Suppose  and  are regular expressions, 

then |, , * , * is also a regular 
expression

Notes: Rules 1) and 2) form the basis of the 
definition; rule 3) provides the inductive step.



Specification of Tokens

4.  Algebraic laws of regular expressions
1) |= |

2) |(|)=(|)| () =( )
3) (| )=  |  (|)= | 
4)  =  = 
5)(*)*=*
6) *=＋| ＋ ＝  * = *
7) (|)*= (* | *)*= (* *)* 



Specification of Tokens

4.  Algebraic laws of regular expressions
8) If L(),then

= |   = * 

= |   =  *

Notes: We assume that the precedence of * 
is the highest, the precedence of | is the 
lowest and they are left associative



Specification of Tokens
5.  Notational Short-hands

a)One or more instances
( r )+      digit+

b)Zero or one instance
r? is a shorthand for r| (E(+|-)?digits)?

c)Character classes
[a-z] denotes a|b|c|…|z
[A-Za-z] [A-Za-z0-9]



Recognition of Tokens

1.  Task of recognition of token in a lexical 
analyzer

– Isolate the lexeme for the next token in the 
input buffer

– Produce as output a pair consisting of the 
appropriate token and attribute-value, such 
as   <id,pointer to table entry> , using the 
translation table given in the Fig in next 
page



Recognition of Tokens

1.  Task of recognition of token in a lexical 
analyzer

Regular 
expression

Token Attribute-
value

if if -
id id Pointer to 

table entry
< relop LT



Recognition of Tokens
2.  Methods to recognition of token

– Use Transition Diagram



CHAPTER 3   LEXICAL 
ANALYSIS
Section 3 Recognition of Tokens

3. Transition Diagram(Stylized flowchart)
– Depict the actions that take place when a 

lexical analyzer is called by the parser to 
get the next token

start
0 6 7

8

return(relop,GE)

return(relop,GT)
*

> =

otherStart 
state

Accepting 
state

Notes: Here we use ‘*’ to indicate states on which  input 
retraction must take place



Recognition of Tokens
4.  Implementing a Transition Diagram

– Each state gets a segment of code

– If there are edges leaving a state, then its 
code reads a character and selects an edge 
to follow, if possible

– Use nextchar() to read next character from 
the input buffer



Recognition of Tokens
4.  Implementing a Transition Diagram

while (1) {
switch(state) {
case 0: c=nextchar();

if (c==blank || c==tab || c==newline){
state=0;lexeme_beginning++}

else if (c== ‘<‘) state=1; 
else if (c==‘=‘)  state=5; 
else if(c==‘>’) state=6 else state=fail();
break

case 9: c=nextchar();
if (isletter( c)) state=10;
else state=fail(); break

… }}}



Recognition of Tokens

5.  A generalized transition diagram

Finite Automation
– Deterministic or non-deterministic FA

– Non-deterministic means that more than 
one transition out of a state may be possible 
on the the same input symbol  



Recognition of Tokens

i f d 2 =…

FA simulator

Input buffer

Lexeme_beginning

6.  The model of recognition of tokens



Recognition of Tokens
E.g：The FA simulator for Identifiers is:

– Which represent the rule: 
identifier=letter(letter|digit)*  

1                  2letter
letter

digit



Finite automata

1. Usage of FA
– Precisely recognize the regular sets
– A regular set is a set of sentences relating 

to the regular expression
2. Sorts of FA

– Deterministic FA
– Non-deterministic FA



Finite automata
3. Deterministic FA (DFA)

DFA is a quintuple, M(S,,move,s0,F）
– S: a set of states
– : the input symbol alphabet
– move: a transition function, mapping from 

S  to S, move(s,a)=s’
– s0: the start state, s0 ∈ S
– F: a set of states F distinguished as 

accepting states, FS



Finite automata
3. Deterministic FA (DFA)
Note: 1) In a DFA, no state has an -

transition;
2)In a DFA, for each state s and input 

symbol a, there is at most one edge 
labeled a leaving s

3)To describe a FA,we use the 
transition graph or transition table

4)A DFA accepts an input string x if 
and only if there is some path in the 
transition graph from start state to some 
accepting state



e.g. DFA   M=({0,1,2,3},{a,b},move,0,{3})
Move: move(0,a)=1 m(0,b)=2 m(1,a)＝3 m(1,b)
＝2

m(2,a)=1  m(2,b)=3  m(3,a)＝3   m(3,b)＝3  
Transition table

input  

state

a b

0 1 2
1 3 2
2 1 3
3 3 3

1
a a

0 3

2
b

b    a

b

a

b

Transition graph



E.g.  Construct a DFA  M，which can accept 
the strings which begin with a or b, or begin 
with c and contain at most one a。

0

1

a      b

b

c                 a

2c

c

b 

3a

c

b



So ,the DFA is 
M=({0,1,2,3,},{a,b,c},move,0,{1,2,3})

move：move(0,a)=1   move(0,b)=1 
move(0,c)=1   move(1,a)=1   
move(1,b)=1   move(1,c)=1
move(2,a)=3   move(2,b)=2 
move(2,c)=2   move(3,b)=3
move(3,c)=3



Finite automata
4. Non-deterministic FA (NFA)

NFA is a quintuple, M(S,,move,s0,F）
– S: a set of states
– : the input symbol alphabet
– move: a mapping from S  to S, 

move(s,a)=2S, 2S S
– s0: the start state, s0 ∈ S
– F: a set of states F distinguished as 

accepting states, FS



Finite automata
4.  Non-deterministic FA (NFA)

Note:1) In a NFA,the same character can label 
two or more transitions out of one state;

2) In a NFA, is a legal input symbol.
3) A DFA is a special case of a NFA
4)A NFA accepts an input string x if and 

only if there is some path in the transition 
graph from start state to some accepting state. 
A path can be represented by a sequence of 
state transitions called moves.

5)The language defined by a NFA is the set 
of input strings it accepts



e.g.  An NFA  M＝
({q0,q1},{0,1},move,q0,{q1})

input
State

0 1

q0 q0 q1

q1 q0， q1 q0

q0 q1

1
1
0

0

0

The language defined by the NFA is 
0*10*|0*10*((1|0)0*10*)*



Finite automata
5. Conversion of an NFA into a DFA
a)Reasons to conversion

Avoiding ambiguity
b)The algorithm idea

Subset construction: The following 
state set of a state in a NFA is thought 
of as a following STATE of the state in 
the converted DFA



Finite automata
5.  Conversion of an NFA into a DFA
c)The pre-process-- -closure(T) 

Obtain -closure(T)  T S
(1) -closure(T) definition

A set of NFA states reachable from NFA 
state s in T on -transitions alone



Finite automata
5.  Conversion of an NFA into a DFA
c)The pre-process--- -closure(T) 

(2)-closure(T) algorithm
push all states in T onto stack;
initialize -closure(T)  to T;
while stack is not empty do {

pop the top element of the stack into t;
for each state u with an edge from t to u 

labeled  do
{
if u is not in -closure(T) {

add u to -closure(T) 
push u into stack}}}



CHAPTER 3   LEXICAL ANALYSIS
Section 4 Finite automata
5. Conversion of an NFA into a DFA
d)Subset Construction algorithm

– Input. An NFA N=(S,,move,S0,Z)
– Output. A DFA D= (Q,,,I0,F), accepting the 

same language



Finite automata
5. Conversion of an NFA into a DFA 
d)Subset Construction algorithm 

(1)I0＝ -closure(S0), I0 ∈Q
(2)For each Ii , Ii ∈Q, 

let It= -closure(move(Ii,a))
if It Q, then put It into Q 

(3)Repeat step (2), until there is no new state 
to put into Q

(4)Let F={I | I ∈ Q,且I ∩ Z <>}



1 y 2x

a
5 

b

a
 6 

a

b b

3

4

a

b

e.g.

I5={5,1,4,6,y}I3={5,3,2,1,6,y}I6={5,3,1,6,y}
I4={5,4,1,2,6,y}I6={5,3,1,6,y}I5={5,1,4,6,y}
I4={5,4,1,2,6,y}I6={5,3,1,6,y}I4={5,4,1,2,6,y}
I5={5,1,4,6,y}I3={5,3,2,1,6,y}I3={5,3,2,1,6,y}
I4={5,4,1,2,6,y}I1={5,3,1}I2={5,4,1}
I2={5,4,1}I3={5,3,2,1,6,y}I1={5,3,1}
I2={5,4,1}I1={5,3,1}I0={x,5,1}

baI



I a b
I0 I1 I2

I1 I3 I2

I2 I1 I4

I3 I3 I5

I4 I6 I4

I5 I6 I4

I6 I3 I5

DFA is

I0

I1

I2

I3

I4 I6

I5a
b   a

a

a      b
a

b
b

b

b

b

a



Finite automata
5. Conversion of an NFA into a DFA 
d)Subset Construction algorithm

Notes:
1)Both DFA and NFA can recognize precisely  
the regular sets;
2)DFA can lead to faster recognizers
3)DFA can be much bigger than an equivalent 
NFA



Finite automata
6. Minimizing the number of States of a DFA 

a)Basic idea
Find all groups of states that can be distinguished 
by some input string. At beginning of the process, 
we assume two distinguished groups of states: 
the group of non-accepting states and the group 
of accepting states. Then we use the method of 
partition of equivalent class on input string to 
partition the existed groups into smaller groups .



Finite automata
6. Minimizing the number of States of a DFA 
b)Algorithm

– Input. A DFA M={S,,move, s0,F}
– Output. A DFA M’ accepting the same 

language as M and having as few states as 
possible.



Finite automata
6. Minimizing the number of States of a DFA 
b)Algorithm

(1)Construct an initial partition ∏ of the set of 
states with two groups: the accepting states F
and the non-accepting states S-F. ∏0＝{I01,I02}



Finite automata
6. Minimizing the number of States of a DFA 
b)Algorithm

(2) For each group I of ∏i ,partition I into 
subgroups such that two states s and t of I are 
in the same subgroup if and only if for all input 
symbols a, states s and t have transitions on a
to states in the same group of ∏i ; replace I in 
∏i+1_by the set of subgroups formed.



Finite automata
6. Minimizing the number of States of a DFA 
b)Algorithm

(3) If ∏i+1 =∏i ,let ∏final =∏i+1 and continue with 
step (4). Otherwise,repeat step (2) with ∏i+1

(4) Choose one state in each group of the 
partition ∏final as the representative for that 
group. The representatives will be the states of 
the reduced DFA M’.  Let s and t be 
representative states for s’s and t’s group 
respectively, and suppose on input a there is a 
transition of M from s to t.  Then M’ has a 
transition from s to t on a.



Finite automata
6. Minimizing the number of States of a DFA 
b)Algorithm

(5) If M’ has a dead state(a state that is not 
accepting and that has transitions to itself on all 
input symbols),then remove it.  Also remove 
any states not reachable from the start state.



Finite automata
6. Minimizing the number of States of a DFA 
b)Algorithm

Notes: The meaning that string w distinguishes
state s from state t is that by starting with the 
DFA M in state s and feeding it input w, we end 
up in an accepting state, but starting in state t 
and feeding it input w, we end up in a non-
accepting state, or vice versa.



e.g. Minimize the following DFA.

0

1

2

3

5

4

6

a
a

a
a

a

aa

b b

b
b

b

b

b



1. Initialization: ∏0＝{{0,1,2},{3,4,5,6}}
2.1 For Non-accepting states in ∏0 :
– a:  move({0,2},a)={1} ; move({1},a)={3} . 1,3 do

not in the same subgroup of ∏0. 
– So ,∏1`＝{{1}，{0,2}，{3,4,5,6}}
– b:  move({0},b)={2}; move({2},b)={5}. 2,5 do 

not in the same subgroup of ∏1‘.
– So, ∏1``＝{{1}，{0}，{2}，{3,4,5,6}}



2.2  For accepting states in ∏0 :
– a: move({3,4,5,6},a)={3,6}, which is the subset 

of {3,4,5,6} in ∏1“
– b: move({3,4,5,6},b)={4,5}, which is the subset 

of {3,4,5,6} in ∏1“
– So, ∏1＝{{1}，{0}，{2}，{3,4,5,6}}.

3.Apply the step (2) again to ∏1 ,and get ∏2.
– ∏2＝{{1},{0},{2},{3,4,5,6}}= ∏1 ,
– So, ∏final = ∏1

4. Let state 3 represent the state group 
{3,4,5,6}



So, the minimized DFA is :

0

1

2

a
a

b
b 3

a a

b b



Regular expression to an NFA
1.The reasons about regular expression to a 

NFA
Strategy for building a recognizer from a
regular expression is to construct an NFA
from a regular expression and then to
simulate the behavior of the NFA on an
input string.



Regular expression to an NFA
2.  Construction of an NFA from a regular 

expression
a)Basic idea

Syntax-directed in that it uses the
syntactic structure of the regular
expression to guide the construction
process.



Regular expression to an NFA
2. Construction of an NFA from a regular 

expression
a)Algorithm
– Input. A regular expression r over an 

alphabet 
– Output. An NFA N accepting L( r)



Regular expression to an NFA
2. Construction of an NFA from a regular 

expression
a)Algorithm 
– Method
(1) Parse r into its constituent sub-expressions.
(2) Use rules in the next pages to construct 

NFA’s for each of the basic symbols in 
r(those that are either  or an alphabet 
symbol).

(3)Use rules in the next and next page to 
combine these NFA’s inductively, and obtain 
the NFA for the entire expression.



Rules

2a1

1. For , 21

2. For a in ,



Rules

1

1 2
| 1 2



21

1 2
*

1 2 1‘

2 1‘



3. Rules for complex regular expressions



e.g. Let us construct N( r) for the regular 
expression r=(a|b)*(aa|bb)(a|b)*

x                                   y  (a|b)*(aa|bb)(a|b)*

1 y
(a|b)* (a|b)*

2x
(aa|bb)

1 y 2x
aa

5 
bb

a|b
 6 

a|b

1 y 2x

a
5 

b

a
 6 

a

b b

3

4

a

b



FA to Regular expression

1. Basic ideas
Reduce the number of states by 
merging states 

2. Algorithm
– Input: An FA M
– Output: A regular expression r over an 

alphabet  recognize the same language 
as FA M 



FA to Regular expression
2. Algorithm

– Method:
• Extend the concept of FA, let the arrows can be 

marked by regular expressions.
• Add two nodes x,y to the FA M and get M’ that 

recognize the same regular language.

x y
 FA



FA to Regular expression
2. Algorithm

– Method:
• Use  the following rules to combine the regular 

expression in the FA’s inductively, and obtain the 
entire expression for the FA

1

1

1

1

1

3

2
|

2


2




3

1

2
* 

2



E.g. Construct the regular expression for 
the following DFA  M.

1
1

1

1
1

32

0

0    0 0    0

x

y







x

0              3
10|01

01|10

00|11
00|11

y





x            0             y 

00|11

(10|01)(00|11)*(01|10)

x                                                           y  
((10|01)(00|11)*(01|10)|(00|11))*



Regular Grammar to an NFA

1. Basic properties
n For each regular grammar 

G=(VN,VT,P,S), there is an FA 
M=(Q,,f,q0,Z), and L(G)=L(M).

n For each FA M, there is a right-linear 
grammar and a left-linear grammar 
recognize the same language. 
L(M)=L(GR)=L(GL)



Regular Grammar to an NFA
2. Right-linear grammar to FA

– Input :G=(VN,VT,P,S)
– Output : FA M=(Q, ,move,q0,Z)
– Method :

• Consider each non-terminal symbol in G 
as a state, and add a new state T as an 
accepting state.

• Let Q=VN∪{T} ,  ＝ VT , q0 ＝S; if there 
is the production S  , then Z={S,T}, 
else Z={T} ;



Regular Grammar to an NFA
2. Right-linear grammar to FA

– Method :
• For each production, construct the 

function move.
a) For the productions similar as A1  aA2，

construct move(A1,a)= A2.
b) For the productions similar as A1  a, 

construct move(A1,a)= T.
c) For each a in ,  move(T,a)=, that 

means the accepting states do not 
recognize any terminal symbol.



E.g. A regular grammar 
G=({S,A,B},{a,b,c},P,S) P:     S aS |aB                   

BbB|bA 
A cA|c

Construct a FA for the grammar G.



Answer: let M=(Q,,f,q0,Z)
1) Add a state T , So Q={S,B,A,T};  ={a,b,c};  

q0=S; Z={T}.
2)     f：

f(S,a)=S    f(S,a)=B
f(B,a)=B f(B,b)=A
f(A,c)=A    f(A,c)=T

B Ta cAS b
a b c



Regular Grammar to an NFA
3. FA to Right-linear grammar

– Input : M=(S ,,f, s0,Z) 
– Output : Rg=(VN,VT,P,s0)
– Method :

• If s0Z, then the Productions are;
a) For the mapping f(Ai,a)=Aj in M, there is a 

production AiaAj;
b) If Aj∈Z, then add a new production Aia，

then we get Aia|aAj;



Regular Grammar to an NFA

3. FA to Right-linear grammar 
– Method :

• If s0∈Z, then we will get the following 
productions besides the productions we’ve 
gotten based on the former rule:

• For the mapping f(s0,)=s0, construct new 
productions, s0

’  |s0, and s0
’ is the new 

starting state.



e.g. construct a right-linear grammar for the 
following DFA M=({A,B,C,D},{0,1},f,A,{B})

C
0 1

A

D
1

0
1

0|1

B

0

Answer:Rg=({A,B,C,D},{0,1},P,A)
A  0B | 1D | 0
B  1C | 0D
C  0B | 1D | 0
D  0D | 1D

L(Rg)=L(M)=0(10)*



Regular-exp Right-linear-Rg

FA



Design of a lexical analyzer 
generator

1. Lexical analyzer generator
A software tool that automatically 

constructs a lexical analyzer from related 
language specification  

2. Typical lexical analyzer generator
Lex



Design of a lexical analyzer 
generator

3. Lex
a) Lexical analyzer generating tool

Lex compiler
b)Input specification

Lex language program



Design of a lexical analyzer 
generator

3. Lex
c) The process that creates a lexical 
analyzer with Lex
Lex source 

program lex.l
Lex.yy.c

Lex.yy.c a.out

Input 
stream

Sequence 
of tokens

Lex compiler

C compiler

a.out



Design of a lexical analyzer 
generator

3. Lex
d) Lex specification

A Lex program consists of three parts:
declaration
%%
translation rules
%%
auxiliary procedures



Design of a lexical analyzer 
generator

3. Lex
d) Lex specification

(1)Declaration
Include declarations of variables, 

manifest constants and regular definitions
Notes: A manifest constant is an 

identifier that is declared to represent a 
constant
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3.  Lex
d) Lex specification

(1)Declaration
%{

/*definitions of manifest constants
LT,LE,EQ,GT,GE,IF,THEN,ELSE,ID*/

%}
/*regular expression*/

delim [\t\n]
ws      {delim}+
letter   [A-Za-z]
digit    [0-9]     
id        {letter}({letter}|{digit})*
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3.  Lex
d) Lex specification

(2)Translation Rules
p1 {action1} /*p—pattern(Regular exp) 

*/
…

pn {actionn}
e.g  {if}    {return(IF);}

{id}   {yylval=install_id();return(ID);}
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3. Lex
d) Lex specification

(3)auxiliary procedures
install_id() {
/* procedure to install the lexeme, whose first 

character is pointed to by yytext and whose length 
is yyleng, into the symbol table and return a 
pointer thereto*/

}
Notes:The auxiliary procedures can be compiled 
separately and loaded with the lexical analyzer. 
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3.  Lex
e) Model of Lex compiler

Lex 
specification Lex compiler

Transition 
table

Lexeme Input buffer

FA simulator

Transition 
table DFA transition table

Look ahead pointer


