
Compiler Design

Lecture-3
Introduction to Compiler Front end and

Back end

Topics CoveredTopics Covered
• Compiler Front-End
• What is a compiler?
• Lexical Analysis
• Syntax Analysis
• Parsing

• Compiler Back-End
• Code Generation
• Register Allocation
• Optimization

• Specific Examples
• lex
• yacc
• lcc

What is a Compiler? What is a Compiler?

Example of tasks of compiler

1. Add two numbers

2. Move numbers from one location to another

3. Move information between CPU and memory

Software Translator

Lexical Analysis Lexical Analysis
First phase of compiler

isolate words/tokens

Example of tokens:

• key words – while, procedure, var, for,..

• identifier – declared by the programmer

• Operators – +, -, *, /, <>, …

• Numeric – numbers such as 124, 12.35, 0.09E-23, etc.

• Character constants

• Special characters

• Comments

Syntax Analysis Syntax Analysis

• What is Syntax Analysis?

Second phase of the compiler

Also called Parser

• What is the Parsing Problem?

• How is the Parsing problem solved?

Top-down and Bottom-up algorithm

TopTop--Down Parsing Down Parsing

What does it do?

One Method: Pushdown Machine

Example:

Consider the simple grammar:

1. S  0 S 1 A

2. S  1 0 A

3. A  0 S 0

4. A  1

Example Example
Process to construct a Pushdown Machine

1. Build a table with each column labeled by a
terminal symbol (and endmarker ) and each row
labeled by a nonterminal or terminal symbol (and
bottom marker )

2. For each grammar rule of the form A  a, fill in
the cell in row A and column a with with: REP(ra),
retain, where r represents  reversed

3. Fill in the cell in row a and column a with pop,
advance, for each terminal symbol a.

4. Fill in the cell in row  and column  with Accept.

5. Fill in all other cells with Reject.

6. Initialize the stack with  and the starting terminal.

BottomBottom--Up Parsing Up Parsing

What does it do?

Two Basic Operations:

1. Shift Operation

2. Reduce Risk Operation

Why Split the Compiler Why Split the Compiler

• Front- End is Machine Independent

• Front-End can be written in a high level language

• Re-use Oriented Programming

• Back-End is Machine Dependent

• Lessens Time Required to Generate New Compilers

• Makes developing new programming languages simpler

Code Generation Code Generation

• Convert functions into simple instructions

– Simple

– Complex

• Addressing the operands

– Base Register

– Offset

– Examples

Single Pass vs. Multiple pass Single Pass vs. Multiple pass
• Single pass

– Creates a table of Jump
Instructions

– Forward Jump Locations are
generated incompletely

– Jump Addresses entered into
a fix-up table along with the
label they are jumping to

– As label destinations
encountered, it is entered
into the table of labels

– After all inputs are read, CG
revisits all of these
problematic jump instructions

• Multiple pass
– No Fix-Up table

– In the first pass through the
inputs, CG does nothing but
generate table of labels.

– Since all labels are now
defined, whenever a jump is
encountered, all labels
already have pre-defined
memory location.

– Possible problem: In first
pass, CG needs to know how
many MLI correspond to a
label.

– Major Drawback-Speed

Register Allocation Register Allocation

• Assign specific CPU registers for specific values

• CG must maintain information on which registers:
– Are used for which purposes
– Are available for reuse

• Main objective:
– Maximize the utilization of the CPU registers
– Minimize references to memory locations

• Possible uses for CPU registers
– Values used many times in a program
– Values that are computationally expensive

• Importance?
– Efficiency
– Speed

Example - For the following 2 statement program segment,
determine a smart register allocation scheme:

A = B + C * D
B = A – C * D

An Example An Example

Simple Register Allocation
LOD (R1,C)
MUL (R1,D)

STO (R1,Temp)
LOD (R1,B)

ADD (R1,Temp)
STO (R1,A)
LOD (R1,C)
MUL (R1,D)

STO (R1,Temp2)
LOD (R1,A)

SUB (R1,Temp2)
STO (R1,B)
Net Result

12 instructions and memory ref.

Smart Register Allocation
LOD (R1,C)
MUL (R1,D) C*D
LOD (R2,B)

ADD (R2,R1) B+C*D
STO (R2,A)

SUB (R2,R1) A-C*D
STO (R2,B)

Net Result
7 instruc. And 5 mem. refs.

• RAA determines how many registers will be
needed to evaluate an expression.

• Determines the Sequence in which sub-
expressions should be evaluated to minimize
register use

Register Allocation Algorithm Register Allocation Algorithm

•Construct a tree starting at the bottom nodes

•Assign each leaf node a weight of:

• 1 if it is the left child

• 0 is it is the right child

• The weight of each parent node will be computed by
the weights of the 2 children as follows:

• If the 2 children have different weights, take the max.

• If the weights are the same, the parent’s weight is w+1

• The number of CPU registers is determined by the
highest summed weight at any stage in the tree.

How does RAA work? How does RAA work?

Example of RAA Example of RAA

LOD (R1,c)
ADD (R1,d) R1 = c +d
LOD (R2,e)
ADD (R2,f) R2 = e + f
MUL (R1,R2) R1 = (c + d) * (e + f)
LOD (R2,a)
MUL (R2,b) R2 = a * b
SUB (R2,R1) R2 = a * b - (c + d) * (e + f)

Example - For the following 2 statement program segment,
determine a smart register allocation scheme:

A*B – (C+D) * (E+F)

Optimization Optimization

• Global

– Directed Acyclic
Graphs (DAGs)

– Data Flow Analysis

– Moving Loop
Invariant Code

– Other
Mathematical
Transformations

• Local

– Load Store
Optimization

– Jump over Jump
Optimization

– Simple Algebraic
Optimization

Analysis of specific compilers Analysis of specific compilers

Programs to be discussed:

• lex – Programming utility that generates a
lexical analyzer

• yacc – Parser generator

• lcc - ANSI C compiler

Platforms:

• All three programs designed for use on Unix

• lcc runs under DOS and Unix

lexlex Programming Utility Programming Utility

General Information:
• Input is stored in a file with *.l extension
• File consists of three main sections
• lex generates C function stored in lex.yy.c

Using lex:
1) Specify words to be used as tokens (Extension of

regular expressions)
2) Run the lex utility on the source file to generate

yylex(), a C function
3) Declares global variables char* yytext and int yyleng

lexlex Programming Utility Programming Utility

Three sections of a lex input file:

/* C declarations and #includes lex definitions */
%{ #include “header.c”
int i; }%

%%
/* lex patterns and actions */
{INT} {sscanf (yytext, “%d”, &i);

printf(“INTEGER\n”);}

%%
/* C functions called by the above actions */
{ yylex(): }

yaccyacc Parser Generator Parser Generator

General Information:
• Input is specification of a language
• Output is a compiler for that language
• yacc generates C function stored in y.tab.c
• Public domain version available

Using yacc:
1) Generates a C function called yyparse()
2) yyparse() may include calls to yylex()
3) Compile this function to obtain the compiler

bison

yaccyacc Parser Generator Parser Generator
yacc source

y.tab.c

a.out

yacc

#include “lex.yy.c”
lex.yy.c

lex source

lex

cc

• Input source file – similar to lex input file

• Declarations, Rules, Support routines

• Four parts of output atom:

(Operation, Left Operand, Right Operand, Result)

lcclcc Compiler Compiler
General Information:

• Retargetable ANSI C compiler (machine specific parts
that are easy to replace)

• Different stages of code:
1. Preprocessed code
2. Tokens
3. Trees
4. DAG (directed acyclic graphs)
5. Assembly language

Test program:
int round(f) float f; {

return f+0.5; /* truncates the variable f */
}

lcclcc Compiler Compiler

Tokens Values

INT inttype

ID “round”

‘(‘

ID “f”

‘)’

FLOAT floattype

ID “f”

‘;’

Tokens Values

‘{‘

RETURN

ID “f”

‘+’

FCON 0.5

‘;’

‘}’

EOI

Token Stream

lcclcc Compiler Compiler
Syntax Trees

RET+I

ADDRF+P CVD+F

INDIR+D

“f” (Double)
caller

ASGN+F

CVD+I

ADD+D

CVF+D CNST+D
(0.5)

INDIR+F

ADDRF+P

“f” (float)
callee

ADDRF+P

lcclcc Compiler Compiler

Register Assembler Template

fld qword ptr %a[ebp] \n

fstp dword ptr %a[ebp] \n

fld dword ptr %a[ebp] \n

#nop \n

fadd qword ptr %a \n

sub esp, 4 \n

fistp dword ptr 0[esp] \n

eax pop %c \n

#ret \n

Conclusion Conclusion

• Compiler Front-End

• Compiler Back-End

• Specific Examples

References References

1. Fraser C., Hanson D. A Retargetable C Compiler:
Design and Implementation. Addison-Wesley
Publishing Company, 1995.

2. Bergmann S. Compiler Design: Theory, Tools, and
Examples. WCB Publishers, 1994.

3. Aho A, Ullman J. The Theory of Parsing,
Translation, and Compiling. Prentice-Hall, 1972.

