Compiler Design

LECTURE-1
e ——
— i ———— —

INTRODUCTION TO COMPILER

Topic covered

What is compliler
Different phase of compiler
Different types of compiler.

What i1s a Compiler?

- A compiler is a computer
program that translates a
program in a source language
Into an equivalent program in a
target language.

- Asource program/code isa Source | Target
program/code written in the program compiler program
source language, which is

usually a high-level language. J'
- Atarget program/code is a
. . Error
program/code written in the message

target language, which often is a
machine language or an
iIntermediate code.

Process of Compiling

| Stream of characters
scanner
Stream of tokens
parser
Parse/syntax tree
— --{ SEMantic analyzer
o [Amotated tree
Intermediate code generator -
] intermediate codle:

v

Code optimization

[ntermediate code;

A

,.. Code gen erator

l Target code

Code optimization

T J Targetcode

Some Data Structures

- Symbol table
7 Literal table
 Parse tree

constants, functions, data types, etc.

~ Store Information associated with identifiers

— Information associated with different types of
identifiers can be different

 Information associated with variables are name, type.
address,size (for array), etc.

 Information associated with functions are name,type
of return value, parameters, address, etc.

Symbol Table
- ldentifiers are names of variables,

Symbol Table (cont’d)

- Accessed In every phase of compilers

— The scanner, parser, and semantic
analyzer put names of identifiers in symbol
table.

— The semantic analyzer stores more
iInformation (e.g. data types) in the table.

— The intermediate code generator, code
optimizer and code generator use
iInformation in symbol table to generate
appropriate code.

- Mostly use hash table for efficiency.

|_iteral table

- Store constants and strings used In
program

— reduce the memory size by reusing
constants and strings

- Can be combined with symbol table

Parse tree

- Dynamically-allocated, pointer-based
structure

- Information for different data types
related to parse trees need to be stored
somewhere.

— Nodes are variant records, storing
iInformation for different types of data

— Nodes store pointers to information stored
In other data structure, e.g. symbol table

10

Scanning

- A scanner reads a stream of characters
and puts them together into some
meaningful (with respect to the source
language) units called tokens.

It produces a stream of tokens for the
next phase of compiler.

11

Parsing

- A parser gets a stream of tokens from
the scanner, and determines If the
syntax (structure) of the program Is
correct according to the (context-free)
grammar of the source language.

- Then, It produces a data structure,
called a parse tree or an abstract syntax
tree, which describes the syntactic

B structure of the program.

l i

Semantic analysis

- It gets the parse tree from the parser together with information about
some syntactic elements

- It determines if the semantics or meaning of the program is correct.

- This part deals with static semantic.

» semantic of programs that can be checked by reading off from the
program only.

 syntax of the language which cannot be described in context-free
grammar.

- Mostly, a semantic analyzer does type checking.

- It modifies the parse tree in order to get that (static) semantically correct
code.

13

Intermediate code generation

- An Intermediate code generator
— takes a parse tree from the semantic
analyzer
— generates a program in the intermediate
language.

~ In some compilers, a source program IS
translated into an intermediate code first and

then the intermediate code Is translated into
the target language.

~ In other compilers, a source program is
translated directly into the target language.

14

Intermediate code generation

(cont’d)

-~ Using intermediate code is beneficial when
compilers which translates a single source

language to many target languages are
required.

— The front-end of a compiler — scanner to
Intermediate code generator — can be used
for every compilers.

— Different back-ends — code optimizer and
code generator— Is required for each target
language.

- One of the popular intermediate code is
three-address code. A three-address code
Instruction is in the form of X =y op z.

15

Code optimization

- Replacing an inefficient sequence of
Instructions with a better sequence of
Instructions.

- Sometimes called code improvement.

- Code optimization can be done:
— after semantic analyzing
« performed on a parse tree

— after intermediate code generation
» performed on a intermediate code

— after code generation
» performed on a target code

16

Code generation

- A code generator

— takes either an intermediate code or a
parse tree

— produces a target program.

17

Error Handling

- Error can be found In every phase of
compilation.

— Errors found during compilation are called
static (or compile-time) errors.

— Errors found during execution are called
dynamic (or run-time) errors

- Compilers need to detect, report, and
recover from error found in source
programs

- Error handlers are different in different
phases of compiler.

18

Cross Compiler

- A compiler which generates target code
for a different machine from one on
which the compller runs.

- A host language Is a language In which
the compiler is written.

— T-diagram
S T

H
- Cross comp1Ji ers are used very often In
practice.

19

Cross Compilers (cont’d)
If we want a compiler from %

language A to language B on
a machine with language E,
— write one with E

— write one with D ifyou havea |A B

compiler from D to E on some DD
machine

e Itis better than the former approach ?
if D is a high-level language but E is

a machine language

— write one from G to B with E If
we have a compiler from A to G E E

0
written in E

Porting

- Porting: construct a compiler between a
source and a target language using one

host language from another host
language

LE

8B

21

Bootstrapping

- If we have to implement, from

scratch, a compiler from a

. A H
high-level language A to a
machine, which is also a host, H
language,

— direct method

— bootstrapping A H

gﬁ AllA, H
AZ Az H
Al As H

22

Cousins of Compilers

- Linkers
- Loaders
~ Interpreters
- Assemblers

23

computability.
- 1940’s

— Many electro-mechanic, stored-program
computers were constructed.
 ABC (Atanasoff Berry Computer) at lowa
o« Z1-4 (by Zuse) in Germany
 ENIAC (programmed by a plug board)

24

History (1930’s -40’s)
- 1930’s
— John von Neumann invented the concept
of stored-program computer.
— Alan Turing defined Turing machine and
T

Hlstory 1950

OA 1F 83 90 4B

op code, address,..

ang elgctronlc storemeuters were

esigne

« EDVAC (by von Neumann)
* ACE (by Turing)

Programs
I_ater or B, 4
anguage C, 3
-Aga LDI A, O
"C®YsT- ADI A, C
- JO n B%c DEC B
call) an
IJNZ B, ST
né1 g] S9 STO O
lerarc

Ine languages.
bly

e and memory

AN (no recursive

XFO, A cal[3anHcE)il%eS?<y

e

Grammar

25

History (1960’s)

- Recursive-descent parsing was
Introduced.

- Nuar designed Algol60, Pascal’s ancestor,
which allows recursive call.

- Backus-Nuar form (BNF) was used to
described Algol60.

- LL(1) parsing was proposed by Lewis and
Stearns.

- General LR parsing was invented by
Knuth.

- SLR parsing was developed by DeRemer.

26

History (1970’s)

- LALR was develpoed by DeRemer.

- Aho and Ullman founded the theory of
LR parsing technigues.

-~ Yacc (Yet Another Compiler Compiler)
was developed by Johnson.

- Type Inference was studied by Milner.

27

