
Compiler Design

LECTURE-1

INTRODUCTION TO COMPILER

2

Topic covered

What is compiler
Different phase of compiler
Different types of compiler.

3

What is a Compiler?
� A compiler is a computer

program that translates a
program in a source language
into an equivalent program in a
target language.

� A source program/code is a
program/code written in the
source language, which is
usually a high-level language.

� A target program/code is a
program/code written in the
target language, which often is a
machine language or an
intermediate code.

4

compiler
Source
program

Target
program

Error
message

Process of Compiling

5

scanner

parser

Semantic analyzer

Intermediate code generator

Code optimization

Code generator

Code optimization

Stream of characters

Stream of tokens

Parse/syntax tree

Annotated tree

Intermediate code

Intermediate code

Target code

Target code

Some Data Structures

� Symbol table
� Literal table
� Parse tree

6

Symbol Table
� Identifiers are names of variables,

constants, functions, data types, etc.
� Store information associated with identifiers

– Information associated with different types of
identifiers can be different

• Information associated with variables are name, type,
address,size (for array), etc.

• Information associated with functions are name,type
of return value, parameters, address, etc.

7

Symbol Table (cont’d)
� Accessed in every phase of compilers

– The scanner, parser, and semantic
analyzer put names of identifiers in symbol
table.

– The semantic analyzer stores more
information (e.g. data types) in the table.

– The intermediate code generator, code
optimizer and code generator use
information in symbol table to generate
appropriate code.

� Mostly use hash table for efficiency.
8

Literal table
� Store constants and strings used in

program
– reduce the memory size by reusing

constants and strings
� Can be combined with symbol table

9

Parse tree
� Dynamically-allocated, pointer-based

structure
� Information for different data types

related to parse trees need to be stored
somewhere.
– Nodes are variant records, storing

information for different types of data
– Nodes store pointers to information stored

in other data structure, e.g. symbol table

10

Scanning
� A scanner reads a stream of characters

and puts them together into some
meaningful (with respect to the source
language) units called tokens.

� It produces a stream of tokens for the
next phase of compiler.

11

Parsing
� A parser gets a stream of tokens from

the scanner, and determines if the
syntax (structure) of the program is
correct according to the (context-free)
grammar of the source language.

� Then, it produces a data structure,
called a parse tree or an abstract syntax
tree, which describes the syntactic
structure of the program.

12

Semantic analysis
• It gets the parse tree from the parser together with information about

some syntactic elements

• It determines if the semantics or meaning of the program is correct.

• This part deals with static semantic.
• semantic of programs that can be checked by reading off from the

program only.
• syntax of the language which cannot be described in context-free

grammar.

• Mostly, a semantic analyzer does type checking.

• It modifies the parse tree in order to get that (static) semantically correct
code.

13

Intermediate code generation
� An intermediate code generator

– takes a parse tree from the semantic
analyzer

– generates a program in the intermediate
language.

� In some compilers, a source program is
translated into an intermediate code first and
then the intermediate code is translated into
the target language.

� In other compilers, a source program is
translated directly into the target language.

14

Intermediate code generation
(cont’d)
� Using intermediate code is beneficial when

compilers which translates a single source
language to many target languages are
required.
– The front-end of a compiler – scanner to

intermediate code generator – can be used
for every compilers.

– Different back-ends – code optimizer and
code generator– is required for each target
language.

� One of the popular intermediate code is
three-address code. A three-address code
instruction is in the form of x = y op z.

15

Code optimization
� Replacing an inefficient sequence of

instructions with a better sequence of
instructions.

� Sometimes called code improvement.
� Code optimization can be done:

– after semantic analyzing
• performed on a parse tree

– after intermediate code generation
• performed on a intermediate code

– after code generation
• performed on a target code

16

Code generation

� A code generator
– takes either an intermediate code or a

parse tree
– produces a target program.

17

Error Handling
� Error can be found in every phase of

compilation.
– Errors found during compilation are called

static (or compile-time) errors.
– Errors found during execution are called

dynamic (or run-time) errors
� Compilers need to detect, report, and

recover from error found in source
programs

� Error handlers are different in different
phases of compiler.

18

Cross Compiler
� A compiler which generates target code

for a different machine from one on
which the compiler runs.

� A host language is a language in which
the compiler is written.
– T-diagram

� Cross compilers are used very often in
practice.

19

S
H

T

Cross Compilers (cont’d)
� If we want a compiler from

language A to language B on
a machine with language E,
– write one with E
– write one with D if you have a

compiler from D to E on some
machine
• It is better than the former approach

if D is a high-level language but E is
a machine language

– write one from G to B with E if
we have a compiler from A to G
written in E

20

A
E

B

D
?

E

A
D

B

G
E

BA
E

G

Porting
� Porting: construct a compiler between a

source and a target language using one
host language from another host
language

21

A
A

K

A
H

H A
H

K

A
A

K

A
H

K A
K

K

Bootstrapping
� If we have to implement, from

scratch, a compiler from a
high-level language A to a
machine, which is also a host,
language,
– direct method
– bootstrapping

22

A
H

H

A

A1

H
A1

A2

H
A2

A3

H
A3

H
H

Cousins of Compilers

� Linkers
� Loaders
� Interpreters
� Assemblers

23

History (1930’s -40’s)
� 1930’s

– John von Neumann invented the concept
of stored-program computer.

– Alan Turing defined Turing machine and
computability.

� 1940’s
– Many electro-mechanic, stored-program

computers were constructed.
• ABC (Atanasoff Berry Computer) at Iowa
• Z1-4 (by Zuse) in Germany
• ENIAC (programmed by a plug board) 24

History : 1950
• Many electronic, stored-program computers were
designed.

• EDVAC (by von Neumann)
• ACE (by Turing)

• Programs were written in machine languages.
• Later, programs are written in assembly
languages instead.

• Assemblers translate symbolic code and memory
address to machine code.

• John Backus developed FORTRAN (no recursive
call) and FORTRAN compiler.

• Noam Chomsky studied structure of languages
and classified them into classes called Chomsky
hierarchy.

25

0A 1F 83 90 4B

op code, address,..

LDI B, 4
LDI C, 3
LDI A, 0

ST: ADI A, C
DEC B
JNZ B, ST
STO 0XF0, A

Grammar

History (1960’s)
� Recursive-descent parsing was

introduced.
� Nuar designed Algol60, Pascal’s ancestor,

which allows recursive call.
� Backus-Nuar form (BNF) was used to

described Algol60.
� LL(1) parsing was proposed by Lewis and

Stearns.
� General LR parsing was invented by

Knuth.
� SLR parsing was developed by DeRemer.

26

History (1970’s)

� LALR was develpoed by DeRemer.
� Aho and Ullman founded the theory of

LR parsing techniques.
� Yacc (Yet Another Compiler Compiler)

was developed by Johnson.
� Type inference was studied by Milner.

27

