SYSTEM SIMULATION AND MODELLING

LECTURE 2

Section D

TOPIC COVERED: Techniques for Generating Random Numbers, Inverse transform Techniques, Convolution Methods,

A random number generator (RNG) is a computational or physical device designed to generate a sequence of numbers or symbols that lack any pattern, i.e., appear random.

There are following methods used for generating random numbers:

- 1. Linear Congruential Generators.
- 2. Lagged Fibonacci Generators.

Linear Congruential GENERATORS

A Linear congruential generator (LCG) is an algorithm that yields a sequence of randomized number calculated with a liner equation.

Linear congruential method is widely used technique for generating random number. This technique is based on linear recurrences of the following form:

$$X_i = (a_i X_{i-1} + \dots + a_k X_{i-k}) \mod (m)$$
 ...(4.1)

where modulus m and the order k of the recurrence are positive integers and the coefficient a_i belong to the set $\{0, 1, \dots, m-1\}$.

If m is a prime number and if the a_i 's satisfy certain conditions the sequence $\{x_i, i \ge 0\}$, has the maximal period of length $\rho = m^k - 1$.

• The random number returned at each step is given by $R_i = \frac{X_i}{m}$. The linear congruential method generates a sequence of integers X_1 , X_2 ... between zero and m-1 by following a recursive relationship

$$X_{i+1} = (aX_i + C) \mod m$$
, where $i = 0, 1, 2, ...$...(4.2)

where the initial value X_0 is called the *seed*, a is called the *multiplier*, C is the increment and m is the modulus.

Note:

- (I) Equation 4.2 is known as the multiplicative congruential method for C = 0
- (II) Equation 4.2 is known as the mixed congruential method for $C \neq 0$

We know that uniformity and independence are the desirable properties of random numbers.

To check on whether these desirable properties have been obtained, a number properties have been obtained, a number of test con be performed. The tests can be placed in two categories based on the properties of interest:

Uniformity and independence. These test are as follows:

- (I) Frequency Test: Uses the kolmogorov Smirnov or the chi-square test to compare the distribution of the set of number generated to a uniform distribution.
- (II) Auto Correlation Test: Test the correlation between number and compares the sample correlation to the expected correlation zero.