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MONTE CARLO METHOD

O Monte Carlo simulation, also known as the
Monte Carlo method, originated in the
1940s at Los Alamos National Laboratory.
Physicists Stanislaw Ulman, Enrico Fermi,
John von Neumann, and Nicholas
Metropolis had to perform repeated
simulations of their atomic physics models
to understand how these models would
behave given the large number of
uncertain input variable values.




Monte Carlo simulation s based on the concept of repeated random samples of model input
variables over many simulation runs.

When seting up a Monte Carlo stmulation or enploying the Monte Carlo Method. on follows a four-
step process. These four steps are:

Step 1: Define a distribution of possible mpus for each mput random variable.

Step 2: Generate mputs tandomly from those distributions,

Step J: Perform a deternunistic computation using that set of tputs,

Step 4: Agaregate the results of the mdrvidual computations nto the final result




While these steps may seem overly stmplistic, they are necessary to capture the essence of how
Monte Carlo stmlations are set up and run. This four-step method requires having the necessary
components 1 place to achieve the final result. These components may tchude;

1. probabilty distribution functions (pdfs) for each random variable

2, a random mumber generator

3. a sanpling rule—a prescription for sampling from the pdfs
4. scoring—a method for combining the results of each run mto the final result




5. error estimation—an estimate of the statistical error of the simlation output as a function of
the mumber of smulation runs and other parameters.

Step 1: Requires the modeler to match a statistical distribution to each mput random variable. If
this distribution 1 known or suffictent data exist to derive it then this step 15 straightforward.
However, 1f the behavior of an mput variable 1s not well understood, then the modzler might

have to estimate this distribution based on empirical observation or subject matter expertise.
The modeler may also use a uniform distribution if he or she 15 lacking any specific
knowledge of the vartable’s characteristics. When additional mformation 15 gathered to
define the vartable, then the niform distribution can be replaced.




Step 2: Requires randomly sampling each mput variable’s distribution many times to develop a
vector of inputs for each variable. Suppose we have two input random variables X and Z.
After sampling n times, we have X' = (.. x, ... x)) and Z = (z,, 7, ... z,). Elements
from these vectors are then sequentially chosen as inputs fo the function defining the
model. The question of how large » should be 15 an mmportant one because the number of
samples determines the power of the output test statistic. As the number of samples
increases, the standard deviation of the test staristic decreases. In other words, there 15 less
variance in the output with larger sample sizes. However, the increase in power i$ not linear
with the number of samples. The incremental improvement of power decreases by a factor
of about 1n, so there 15 a point when more sampling provides little improvement.

Is straightforward. It mvolves sequentially choosing elements from the randomly generated
mput vectors and computing the value of the output variable or variables until all n outputs
are generated for each output variable.

Involves aggregating all these outputs. Suppose we have one output variable ¥. Then we
would have as a result of step 4 an output vector I'= (y. v,. .... v,). We can then perform
a vartety of statistical tests on ¥ to analyze this output.




