TSN: Lecture 23 Introduction to Traffic Engineering

Topics Covered

- Statistical Analysis
- Call Arrivals
- Objective of Traffic Engineering
- Blocking

Basic Concept

- Performance analysis methods applied to telephony are usually referred to as traffic engineering
- Motivated by two factors
 - Unpredictable behavior of users
 - You never know when they call!
 - Users have to share resources
 - Users have to be happy!

Statistical Analysis

- We cannot exactly predict what users do!
- We can statistically tell what users may do!
- Looking at the traffic pattern we can see
 - Number of callers arrived in one hour = 20/hr
 - Average length of calls = 3 min/call
- Statistics on voice and data communications are very different
 - Data tends to be bursty
 - Voice is continuous with known average length

Call Arrivals

- Calls arrive randomly!
 - But how?
- Looking at call arrivals
 - Average call interval (I=2sec/call)
 - Number of calls per unit interval (A=10call/min)
 - Note that I is inversely proportional to A

More Calls \rightarrow Shorter time between successive calls

Objective of Traffic Engineering

- Given expected traffic (+ growth assumptions)...
- Provision resources (trunks, switches)...
- To minimize cost ...
- Subject to minimum acceptable quality of service requirements.

Available tools:

- Mathematical tools
 - Equations and formulas / Statistical tools
- Simulation tools
 - OPNE; OMNET; etc.

What is Blocking?

The challenge

- how do we determine the appropriate compromise?

Traffic Model Tool

- Calls arrive randomly
- All calls are independent
- Traffic models
 - Idea: telephone usage and sizing the network
 - Difference: What to do when blocking happens
 - Objective: calculate the Grade of Service (GOS)
 - If GOS is 0.01 (P.01) → 1 call will be blocked out of 100 attempted calls!
 - Defined formally as the number of lost calls over offered calls
- Two common models
 - Erlang C
 - Call arrival behavior follows a Poisson distribution
 - blocked calls may be retried at anytime
 - Erlang B Model
 - When a call is blocked it is cleared and will only be tried later
 - The load does not consider blocked calls

Traffic Characteristics

- It is all about sharing effectively:
 - Telephone traffic is the aggregate of telephone calls over a group of circuits or trunks with regard of the number and duration of calls.
- Units:
 - Call arrival rate / hour (A)
 - Average service time or hold time (tm) / hour
 - Duration of the call
 - An *Erlang* (E) is a unit of telecommunications traffic measurement.
 - Strictly speaking, an Erlang represents the continuous use of one voice path.
 - In practice, it is used to describe the total traffic volume of one hour
 - Expresses the traffic intensity (dimensionless)
 - E = A x tm (in Erlang)

Traffic Characteristics

- Common units used in North America:
 - CS : calls-second per second
 - CCS : hundred (centrum) calls-second per hour
 - I Erlang = (60)(60)/100 = 36 CCS = 3600 CS
- Capacity of a single channel is one Erlang
 - Interpretation: a telephone that is busy 10% of the time represents a load of 0.1 Erlang on that particular line
- Example: 1000 calls/hour each has an average length of 5 min: 1000x(5/60)=83.33 Erlang; note the total capacity is 100!
 - What is CS and CCS?

Using Erlang B Formula

Assumptions:

- Poisson arrivals (infinite # of sources)
- equal traffic density per source
- Iost calls cleared
- Probability of blockage at the switch due to congestion or "all trunks busy":
 - E is the mean of the offered traffic [Erlangs], s is the number of trunks

 $=\frac{\frac{E^{s}}{s!}}{\sum_{k=0}^{s}\frac{E^{k}}{k!}}$

 $P_{{\it Blocking}}$ -

Using Erlang B Formula

Example: Suppose our expected traffic in the busy hour is 10 erlangs

and we require blocking probability of 1 call in 200 (or better).

- What is the grade of service?
- •How many trunks should we use?
- What is the efficiency of the system?

 →1/200 = P0.005 = GOS
→20 Trunks
→Efficiency = Erlang/Number of Tunks (x100) = 10/20 (x100) = 50%

Trunks	P=0.001	P=0.005	P=0.01	P=0.05
1	.001	.005	.01	.05
5	.76	1.13	1.36	2.22
10	3.09	3.96	4.46	6.22
15	6.08	7.38	8.11	10.63
20	9.41	11.09	12.03	15.25
25	12.97	15	16.12	19.99

Erlang B Behavior

- The Y axis is typically expressed in log scale
- S is the number of trunks
- Blocking is between o-1
- Note that eventually blocking will approach 1
- Larges S (more trunks result in lower blocking)
- As the load increases (higher Erlang) more blocking is expected
- Higher load can be due to longer hold time or more call arrivals

References

- <u>http://www.cisco.com/univercd/cc/td/doc/cisintwk/intsolns/voi psol/ta_isd.htm</u> on traffic analysis
- <u>http://www.tarrani.net/mike/docs/TrafficEngineering.pdf</u> good information on traffic engineering and statistical calculations
- Tools to calcualte Erlang B
 - http://personal.telefonica.terra.es/web/vr/erlang/eng/mcerlb.htm
 - <u>http://www.erlang.com/calculator/erlb/</u> (this one may be simpler to use!)