TSN: Lecture 9 Non-blocking Switch

Topics Covered

- Non-blocking Switch Performance
- Switch Performance
- Hybrid solutions
- Multicasting
- Generating and distributing copies
- Header translation

Non-blocking Switch Performance

- Non-blocking Switch with no buffers
- If output contention occurs, only one among n contending packets transmitted, all other dropped
- Throughput = 63.2\%; But remaining is all packet loss!!
- Non-blocking Switch FIFO input buffers
- Throughput = 58.6\%

- For a Bernoulli pald ket aaffival) process (with a probability p)

Switch Performance (contd ..)

- Non-blocking switch with non-FIFO buffers
- packets are selected from a window (w) of buffer to minimize contention

Size	FIFO	Window Size (w)								
N		1	2	3	4	5	6	7	8	
2	75.0%	75%	84%	89%	92%	93%	94%	95%	96%	
4	65.5%	66%	76%	81%	85%	87%	89%	94%	92%	
8	61.8%	62%	72%	78%	82%	85%	87%	88%	89%	
16		60%	71%	77%	81%	84%	86%	87%	88%	
32		59%	70%	76%	80%	83%	85%	87%	88%	
64		59%	70%	76%	80%	83%	85%	86%	88%	
∞	58.6%									

Switch Performance (contd ..)

- Non-blocking Switch with Output buffers
- Best performance (100% Throughput) as there is no HOL blocking
- Delay performance depends on the output queueing
- Non-blocking Switch with Shared buffers
- Packets lost in contention are stored in a separate buffer that feeds as direct input (depending upon the number of extra inputs)
- Performance can be close to 100% with large shared buffer
- Switch size grows

Hybrid solutions

- Buffers at more than one point
- Becomes hard to analyze and manage
- But common in practice

Outline

- Circuit switching
- Packet switching
- Switch generations
- Switch fabrics
- Buffer placement
- Multicast switches

Multicasting

- Useful to do this in hardware
- Assume port-mapper knows list of outputs
- Incoming packet must be copied to these output ports
- Two subproblems
" generating and distributing copies
- VCI translation for the copies

Generating and distributing copies

EItner mmplicit or explert

- Implicit
- suitable for bus-based, ring-based, crossbar, or broadcast switches
- multiple outputs enabled after placing packet on shared bus
- used in Paris and Datapath switches
- Explicit
- need to copy a packet at switch elements
- use a copy network
- place \# of copies in tag
- element copies to both outputs and decrements count on one of them
- collect copies at outputs
- Both schemes increase blocking probability

Header translation

- Normally, in-VCl to out-VCI translation can be done either at input or output
- With multicasting, translation easier at output port (why?)
- Use separate port mapping and translation tables
- Input maps a VCI to a set of output ports
- Output port swaps VCI
- Need to do two lookups per packet

Packet Size Impacts

Fixed Length Packets

- Variable Length Packets

