


2 

 Blocking 
 Sorting 
 Merging Networks 
 Effect of packet size on switching fabrics 



3 

 Can avoid with a buffered banyan switch 
 but this is too expensive; how much buffer at each element? 

 hard to achieve zero loss even with buffers 
 Instead, can check if path is available before sending packet 

 three-phase scheme 

 send requests 

 inform winners 

 send packets 
 Or, use several banyan fabrics in parallel 

 intentionally misroute and tag one of a colliding pair 

 divert tagged packets to a second banyan, and so on to k stages 

 expensive (e.g., 32x32 switch with 9 banyans can achive 10-9 loss) 

 can reorder packets 

 output buffers have to run k times faster than input 



4 

 Or we can avoid blocking by choosing order in which packets appear at 
input ports 

 If we can  
 present packets at inputs sorted by output  

 similar to TSI 

 remove duplicates  

 remove gaps 

 precede banyan with a perfect shuffle stage 

 then no internal blocking 
 For example 

 [X, 011, 010, X, 011, X, X, X] -(sort)->         [010, 
011, 011, X, X, X, X, X] -(remove dups)->    [010, 011, X, X, X, 
X, X, X] -(shuffle)->      [010, X, 011, X, X, X, X, X] 

 Need sort, shuffle, and trap networks 
 

Shuffle 
Exchange 

This input when 
presented to Banyan 
Network is non-blocking 



5 

 Build sorters from merge networks 
 Assume we can merge two sorted lists to make a 

larger sorted list 
 Called Batcher Network 
 Needs log N log N+1/2 stages 

 Sort pairwise, merge, recurse 
 Divide list of N elements into pairs and sort each 

pair (gives N/2 lists) 
 Merge pair wise to form N/4 and recurse to form 

N/8 etc to form one fully sorted list 
 All we need is way to sort two elements and a 

way to merge sorted lists 



6 

 Sort the list 5,7,2,3,6,2,4,5 by merging 
 Solution: 
 Sort elements two-by-two to get four sorted lists 

{5,7}, {2,3}, {2,6}, {4,5} 

 Second step is to merge adjacent lists to get four 
element sorted lists {2,3,5,7}, {2,4,5,6} 

 In the third step, we merge two lists to create a fully 
sorted list {2,2,3,4,5,5,6,7} 

 Sorter is easy to build 
 Use a comparator 

 Merging needs a separate network 



7 

 A merging network of size 2N takes two 
sorted lists of size N as inputs and creates a 
merged list of size 2N 

 Consists of two N-sized merging networks 
 One of them merges all the even elements of 

the two inputs and the other merges all the 
odd elements 

 The outputs of the mergers are handed to a 
set of 2x2 comparators 



8 

2 

3 

4 

7 

2 

4 

5 

6 

2 

2 

3 

4 

4 

5 

2 

4 

6 

7 

4 

6 

2 

2 

3 

4 

4 

5 

6 

7 



9 

 Merge the two sorted lists {2,3,4,7} and {2,4,5,6} 
 Solution: 
 First stage, we merge even elements from the two lists 

{2,4} with {2,5} 
 Recursing we need to merge {2} with {2} and {4} with {5} 

then compare them 
 Results of the two merges are {2,2} and {4,5} 
 Comparing higher element of the first list with lower 

element of the second list, we determine the merged list is 
{2,2,4,5} 

 Next merge odd elements {3,7} with {4,6} with result {3,4} 
and {6,7} 

 Comparing the high and low elements we get merged list 
{3,4,6,7} 

 Carrying out the comparisons we get {2,2,3,4,4,5,6,7} 



10 

 What about trapped duplicates? 

 re-circulate to beginning 

 or run output of trap to multiple banyans (dilation) 



11 

 A major motivation for small fixed packet size in ATM 
is ease of building large parallel fabrics 

 In general, smaller size => more per-packet overhead, 
but more preemption points/sec 
 At high speeds, overhead dominates! 

 Fixed size packets helps build synchronous switch 
 But we could fragment at entry and reassemble at exit 

 Or build an asynchronous fabric 

 Thus, variable size doesn’t hurt too much 
 Maybe Internet routers can be almost as cost-

effective as ATM switches 


