


2 

 Blocking 
 Sorting 
 Merging Networks 
 Effect of packet size on switching fabrics 



3 

 Can avoid with a buffered banyan switch 
 but this is too expensive; how much buffer at each element? 

 hard to achieve zero loss even with buffers 
 Instead, can check if path is available before sending packet 

 three-phase scheme 

 send requests 

 inform winners 

 send packets 
 Or, use several banyan fabrics in parallel 

 intentionally misroute and tag one of a colliding pair 

 divert tagged packets to a second banyan, and so on to k stages 

 expensive (e.g., 32x32 switch with 9 banyans can achive 10-9 loss) 

 can reorder packets 

 output buffers have to run k times faster than input 



4 

 Or we can avoid blocking by choosing order in which packets appear at 
input ports 

 If we can  
 present packets at inputs sorted by output  

 similar to TSI 

 remove duplicates  

 remove gaps 

 precede banyan with a perfect shuffle stage 

 then no internal blocking 
 For example 

 [X, 011, 010, X, 011, X, X, X] -(sort)->         [010, 
011, 011, X, X, X, X, X] -(remove dups)->    [010, 011, X, X, X, 
X, X, X] -(shuffle)->      [010, X, 011, X, X, X, X, X] 

 Need sort, shuffle, and trap networks 
 

Shuffle 
Exchange 

This input when 
presented to Banyan 
Network is non-blocking 



5 

 Build sorters from merge networks 
 Assume we can merge two sorted lists to make a 

larger sorted list 
 Called Batcher Network 
 Needs log N log N+1/2 stages 

 Sort pairwise, merge, recurse 
 Divide list of N elements into pairs and sort each 

pair (gives N/2 lists) 
 Merge pair wise to form N/4 and recurse to form 

N/8 etc to form one fully sorted list 
 All we need is way to sort two elements and a 

way to merge sorted lists 



6 

 Sort the list 5,7,2,3,6,2,4,5 by merging 
 Solution: 
 Sort elements two-by-two to get four sorted lists 

{5,7}, {2,3}, {2,6}, {4,5} 

 Second step is to merge adjacent lists to get four 
element sorted lists {2,3,5,7}, {2,4,5,6} 

 In the third step, we merge two lists to create a fully 
sorted list {2,2,3,4,5,5,6,7} 

 Sorter is easy to build 
 Use a comparator 

 Merging needs a separate network 



7 

 A merging network of size 2N takes two 
sorted lists of size N as inputs and creates a 
merged list of size 2N 

 Consists of two N-sized merging networks 
 One of them merges all the even elements of 

the two inputs and the other merges all the 
odd elements 

 The outputs of the mergers are handed to a 
set of 2x2 comparators 



8 

2 

3 

4 

7 

2 

4 

5 

6 

2 

2 

3 

4 

4 

5 

2 

4 

6 

7 

4 

6 

2 

2 

3 

4 

4 

5 

6 

7 



9 

 Merge the two sorted lists {2,3,4,7} and {2,4,5,6} 
 Solution: 
 First stage, we merge even elements from the two lists 

{2,4} with {2,5} 
 Recursing we need to merge {2} with {2} and {4} with {5} 

then compare them 
 Results of the two merges are {2,2} and {4,5} 
 Comparing higher element of the first list with lower 

element of the second list, we determine the merged list is 
{2,2,4,5} 

 Next merge odd elements {3,7} with {4,6} with result {3,4} 
and {6,7} 

 Comparing the high and low elements we get merged list 
{3,4,6,7} 

 Carrying out the comparisons we get {2,2,3,4,4,5,6,7} 



10 

 What about trapped duplicates? 

 re-circulate to beginning 

 or run output of trap to multiple banyans (dilation) 



11 

 A major motivation for small fixed packet size in ATM 
is ease of building large parallel fabrics 

 In general, smaller size => more per-packet overhead, 
but more preemption points/sec 
 At high speeds, overhead dominates! 

 Fixed size packets helps build synchronous switch 
 But we could fragment at entry and reassemble at exit 

 Or build an asynchronous fabric 

 Thus, variable size doesn’t hurt too much 
 Maybe Internet routers can be almost as cost-

effective as ATM switches 


