TSN: Lecture 6 Circuit & Packet Switching

## **Topics Covered**

- Circuit switching
- Packet switching
  - Switch generations
  - Switch fabrics
  - Buffer placement
  - Multicast switches

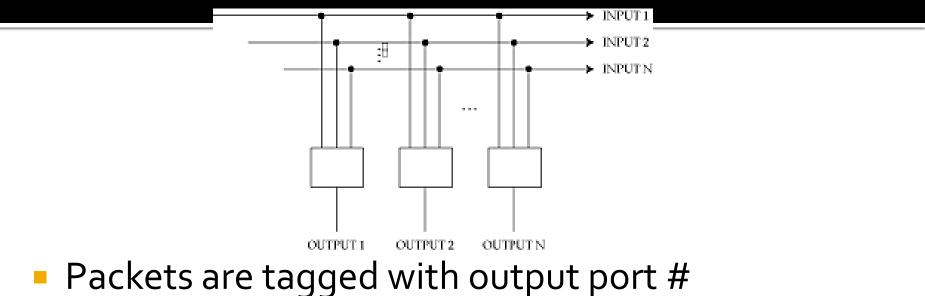
## **Switch fabrics**

- Transfer data from input to output, ignoring scheduling and buffering
- Usually consist of links and switching elements

### Crossbar

- Simplest switch fabric
  - think of it as 2N buses in parallel
- Used here for *packet* routing: cross-point is left open long enough to transfer a packet from an input to an output
- For fixed-size packets and known arrival pattern, can compute schedule in advance (e.g., circuit switching)
- Otherwise, need to compute a schedule onthe-fly (what does the schedule depend on?)

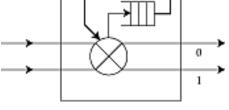
## **Buffered crossbar**


- What happens if packets at two inputs both want to go to same output?
  - Output blocking
- Can defer one at an input buffer
- Or, buffer cross-points
- How large is the buffer size?
- Overflow in the switch CONTROL ON THE SWI
  - Can we afford?
  - Solutions?
    - Backpressure

Buffer

ARBITER

ARBITER


#### Broadcast



- Each output matches tags
- Need to match N addresses in parallel at each output
- Useful only for small switches, or as a stage in a large switch

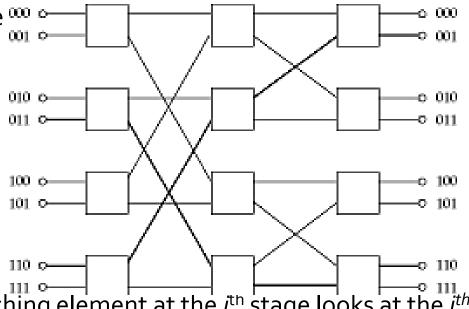
## Switch fabric element

- Can build complicated fabrics from a simple element consisting of two inputs, two outputs and an optional buffer
- Packets arrive simultaneously; Look at the header;



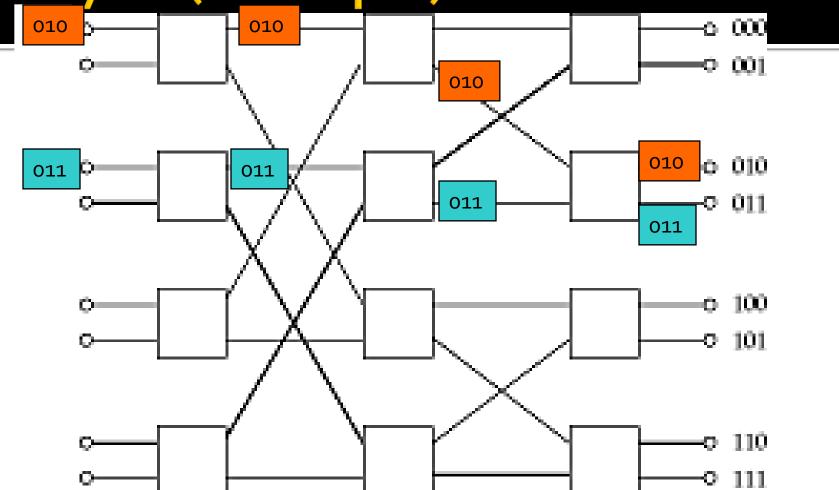
- Routing rule: if o, send packet to upper output, else to lower output
- If both packets to same output, buffer or drop

# Features of fabrics built with switching elements


- NxN switch with bxb elements has N/b elements per stage
  - e.g., 8x8 switch with 2x2 elements has 3 stages of 4 elements per stage

lotage with

- e.g., 4096x4096 switch built with 8x8 blocks has four stages with 512 elements in each stage
- Fabric is self routing
  - Once a packet is labeled to a correct output, it will automatically makes its way
- Recursive
  - composed of smaller components that resemble larger network
- Can be synchronous or asynchronous (permits variable length packets)
- Regular and suitable for VLSI implementation




- Simplest self-routing recursive <sup>000</sup> of port in binary
- Made of 2x2 switches
- Fabric needs n stages for 2<sup>n</sup> outputs with 2<sup>n-1</sup> elements in each stage



- (why does it work?) Each switching element at the *i*<sup>th</sup> stage looks at the *i*<sup>th</sup> bit to make a forwarding decision
- What if two packets both want to go to the same output?
  - output blocking

#### Banyan (Example)

