TSN: Lecture 6 Circuit \& Packet Switching

Topics Covered

- Circuit switching
- Packet switching
- Switch generations
- Switch fabrics
- Buffer placement
- Multicast switches

Switch fabrics

- Transfer data from input to output, ignoring scheduling and buffering
- Usually consist of links and switching elements

Crossbar

- Simplest switch fabric
" think of it as 2 N buses in parallel
- Used here for packet routing: cross-point is left open long enough to transfer a packet from an input to an output
- For fixed-size packets and known arrival pattern, can compute schedule in advance (e.g., circuit switching)
- Otherwise, need to compute a schedule on-the-fly (what does the schedule depend on?)

Buffered crossbar

- What happens if packets at two inputs both want to go to same output?
- Output blocking
- Can defer one at an input buffer
- Or, buffer cross-points
- How large is the buffer/size?
- Overflow in the switch …
- Can we afford?
- Solutions?
- Backpressure

Broadcast

- Packets are tagged with output port \#
- Each output matches tags
- Need to match N addresses in parallel at each output
- Useful only for small switches, or as a stage in a large switch

Switch fabric element

- Can build complicated fabrics from a simple element consisting of two inputs, two outputs and an optional buffer
- Packets arrive simıltanenıisly; Look at the header;

- Routing rule: if o, send packet to upper output, else to lower output
- If both packets to same output, buffer or drop

Features of fabrics built with switching elements

- NxN switch with bxb elements has
litugads with $N / b \mid$ elements per stage
- e.g., 8×8 switch with 2×2 elements has 3 stages of 4 elements per stage
- e.g., 4096×4096 switch built with 8×8 blocks has four stages with 512 elements in each stage
- Fabric is self routing
- Once a packet is labeled to a correct output, it will automatically makes its way
- Recursive
- composed of smaller components that resemble larger network
- Can be synchronous or asynchronous (permits variable length packets)
- Regular and suitable for VLSI implementation

Banyan

- Simplest self-routing recursive port in binary
- Made of 2x2 switches
- Fabric needs n stages for 2^{n} outputs with $2^{\mathrm{n}-1}$ elements in each stage

- (why does it work?) Each switching element at the $i^{\text {n }}$ stage looks at the $i^{\text {th }}$ bit to make a forwarding decision
- What if two packets both want to go to the same output?
- output blocking

Banyan (Example)

