TSN: Lecture 2 Clos Network

Topics Covered

Time -space switching
Clos Network
Time -space-Time switching

Clos Network

- How large should be k (\# of center stages) for the switch to be internally non-blocking??
- Clos [1953 paper] showed that if a switch controller is willing to rearrange existing connections when a new call is arrived, the condition is
- $k \geq n$ (i.e., the number of center stages must be greater than the number of inputs in a group) ($k=2 n-1$)
- Also called re-arrangably non-blocking switch
- In practice we cannot rearrange live calls (without breaking the circuit) - becomes complex (make before break)
- Clos network of size $N x N$ has $2 N(2 n-1)+(2 n-1) x(N / n)^{2}$ cross points, way smaller than N^{2}

Time-space switching

- Precede each input trunk in a crossbar with a TSI
- Delay samples so that they arrive at the right time for the space division switch's schedule
- Re-orders samples within an input line and switches them to different output if there is output blocking

1 and 13 do not contend
(b)

Time-space-time (TST) switching

- Similar to 3-stage crossbar except input and output cross bars use TSI
- Allowed to flip samples both on input and output trunk
- samples in a TS switch may arrive out of order. Use output TSI to re-order
- Gives more flexibility => lowers call blocking probability

1,2,13,14 all switched to output $1 ; 1,2$ also switched to Trunk Group B and 13,14 are switched to Trunk Group A

Line Heterogeneity

Traffic Engineering

- For $M \times N$ switch, as $M \rightarrow \infty$, the probability of blocking (i.e., a call is lost) is given by Erlang-B formula

$$
P_{B}=p_{N}=\frac{A^{N} / N!}{\sum^{N} A^{n} /}, \quad \text { where } \quad A=\lambda / \mu
$$

- λ is the call arrival rathe (cal| $34 / \mathrm{sec}$)
- $1 / \mu$ is the call holding time (3 minutes)
- Example: (For A =12 Erlangs)
- $P_{B}=1 \%$ for $N=20 ; A / N=0.6$
- $P_{B}=8 \%$ for $N=18 ; A / N=0.8$
- $P_{B}=30 \%$ for $N=7 ; A / N=1.7$

CCS7 Signaling

- Common channel signaling (out of band) for setup, administration, toll-free management, billing, callingcard

- SSP: Service Switching Point (Telephone Switches)
- STP: Signal Transfer Point (Routing Management)
- SCP: Service Control Point (Database)

Outline

- Circuit switching
- Packet switching
- Switch generations
- Switch fabrics
- Buffer placement
- Multicast switches

Packet switching

- In a circuit switch, path of a sample is determined at time of connection establishment
- No need for a sample header--position in frame is enough
- In a packet switch, packets carry a destination field
- Need to look up destination port on-the-fly
- Datagram
- lookup based on entire destination address
- ATM Cell
- lookup based onVCI
- MPLS Packet
" Lookup based on label in the packet
- Other than that, very similar

Port mappers

- Look up output port based on destination address
- Easy for VCI: just use a table (Cross Connect)
- Harder for datagrams:
- need to find longest prefix match
" e.g. packet with address 128.32.1.20
" entries: (128.32.*,3), (128.32.1.*, 4), (128.32.1.20, 2)
- A standard solution: trie
- A tree in which each node corresponds to a string that is defined by the path to that node from the root
- Alphabet is a finite set of elements used to form address strings
- Children of each node correspond to every element of the alphabet

Tries

- Two ways to improve performance
- cache recently used addresses (principle of locality) in a CAM
- move common entries up to a higher level (match longer strings)

Blocking in packet switches

- Can have both internal and output blocking
- Internal
- no path to output
- Output
- trunk unavailable
- Unlike a circuit switch, cannot predict if packets will block (why?)
- If packet is blocked, must either buffer or drop it

Dealing with blocking

- Over-provisioning
- internal links much faster than inputs
- expensive, waste of resources
- Buffers
- at input or output

- Backpressure
- if switch fabric doesn't have buffers, prevent packet from entering until path is available, by sending signals from output to input quickly.
- Sorting and Randomization
- For certain fabrics, sorting or randomization reduces internal blocking
- Parallel switch fabrics
- increases effective switching capacity

Outline

- Circuit switching
- Packet switching
- Switch generations
- Switch fabrics
- Buffer placement
- Multicast switches

