TSN: Lecture 1 Switch and Router Architectures

Topics Covered

- Circuit switching
- Packet switching
- Switch generations
- Switch fabrics
- Buffer placement
- Multicast switches

Circuit switching

- Moving 8-bit samples from an input port to an output port
- Recall that samples have no headers
- Destination of sample depends on time at which it arrives at the switch
- actually, relative order within a frame
- once connection is setup, a time slot assigned, the sample always arrives in that slot
- No other header are necessary
- We'll first study something simpler than a switch: a multiplexor

Multiplexors and demultiplexors

- Most trunks time division multiplex voice samples
- At a central office, trunk is demultiplexed and distributed to active circuits
- Synchronous multiplexor

More on multiplexing

- Demultiplexor
- one input line and N outputs that run N times slower
- samples are placed in output buffer in round robin order
- Neither multiplexor nor demultiplexor needs addressing information (why?)
- Can cascade multiplexors
- need a standard
" example: DS hierarchy in the US and Japan
- DSo $=64 \mathrm{Kbps}$ single voice circuit
- $\mathrm{T}_{1} / \mathrm{DS}_{1}=24 \mathrm{DSo}=1.544 \mathrm{Mbps}$
- T3/DS3=28T1 = 672 DSo

Inverse multiplexing

- Takes a high bit-rate stream and scatters it across multiple trunks
- At the other end, combines multiple streams
- re-sequencing to accommodate variation in delays
- Allows high-speed virtual links using existing technology

A circuit switch

- A switch that can handle N calls has N logical inputs and N logical outputs
- N up to 200,000
- In practice, input trunks are multiplexed
- example: DS3 trunk carries 672 simultaneous calls
- Multiplexed trunks carry frames = set of samples
- Goal: extract samples from frame, and depending on position in frame, switch to output
- each incoming sample has to get to the right output line and the right slot in the output frame
- demultiplex, switch, multiplex

Call blocking

- Can't find a path from input to output
- Internal blocking
- slot in output frame exists, but no path
- Switches are classified as blocking or non-blocking
- depends upon the architecture
- a characteristic of the switch architecture
- Output blocking
- no slot in output frame is available (no resources)
- independent of switch internal blocking
" occurs for either blocking or non-blocking switches
- causes Head of Line (HOL) blocking

Time division switching

- Key idea: when demultiplexing, position in frame determines output trunk
- Time divicinn mansitrhinn intarrhanges sample position (TSI)

(a)

TEAPHONES

How large a TSI can we build?

- Limit is time taken to read and write to memory
- For 120,000 circuits
- need to read and write memory (2 operations) once every 125 microseconds
- Voice $=64 \mathrm{Kbps}$
- Sample = 8 bytes
- Rate $=8000$ samples / second
- Time = 1/8000 = 125 microseconds per sample
- each operation (read or write) takes around 0.5 ns for 120000 circuit TSI
- impossible with current technoloqy

Space division switching

- Each sample takes a different path through the s

Crossbar

division switch. $N \times M$ crossbar has N inputs and M outputs

- Crosspoints can be turned on or off (think of a design) ${ }^{\text {wis }}$
- Need a switching schedule (why and what
frequency??)

OUTPUTS

- Multiplex and non-multiplex signals
- Internally non-blocking (why?)

Multistage crossbar

- In a crossbar during each switching time only one crosspoint per row or column is active
- Can save crosspoints if a crosspoint switch can attach to more than one input line (why?)
- This is done in a multistage crossbar
- Inputs are broken into groups (e.g, 20 lines, 2 groups of 10 lines each)
- Multiple paths between inputs and output group share a centre stage switch
- Need to rearrange connections every switching time (switching schedule)

$$
\begin{aligned}
& N=20 \\
& 4=10 \\
& k=3
\end{aligned}
$$

Multistage Switching

Total Number of Cross Points $=2 \mathrm{Nk}+\mathrm{k}(\mathrm{N} / \mathrm{k})^{2}$

Multistage crossbar

- First stage consists of N / n arrays of size $n x k$ each
- Second stage consists of k arrays of size $N / n \times N / n$ each
- Third stage consists of N / n arrays of size $k x n$ each
- Can suffer internal blocking
- unless sufficient number of second-level stages
- Number of crosspoints < N ${ }^{2}$
- Finding a path from input to output
- switch controller needs to find a path at the time of call setup
- uses path search algorithms, such as depth-first-search
- the path is then stored in the switch schedule
- Scales better than crossbar, but still not too well
- 120,000 call switch needs ~250 million crosspoints

