# Lecture 22 & 23

## PRINCIPLES OF SATELLITE COMMUNICATION



#### **OPTICAL SATELLITE LINK TRANSMITTER**

- LASER SOURCE
- MODULATOR
- ANTENNAS

# Satellite beam and acquisition, tracking and pointing

- Vt is the tangential velocity of the receiving satellite
- $\alpha = Vt/150$  micro radians
- Point ahead angle exceed the one half of the laser modulated beam width then the use of point ahead angle is made

#### LASER

- LASER SOURCE:
- a. GAS LASER,
- b. SOLID STATE LASER,
- c. SEMICONDUCTOR LASER

#### Semiconductor laser

- AlGaAs and InGaAsP are also being used
- $\bullet$  AlGaAs is reliable between 0.78 and 0.86  $\mu m$
- InGaAsP emits between 1.2 and 1,65 μm
- Lasers diodes are low power devices
- Used in arrays to increase output

#### LASER Advantage

- Small size
- Weight
- High efficiency
- Reliability
- Easily modulated

#### DISADVANTAGE

- Beam combining problem due to limited power per diode.
- Integrated optical technology has developed coherent combining technology
- Increasing the power
- Decreasing the beam divergence

#### Laser commonly used in satellite communication

| LASER<br>TYPE | WAVELE<br>NGTH | AVERA<br>GE<br>POWE<br>R<br>OUTPU<br>T | EFFICIEN<br>CY | CHARACTERISTICS                                                                                                             |
|---------------|----------------|----------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------|
| Nd-YAG        | 1.06 µ         | 0.5-1 W                                | 0.5-1%         | Requires elaborate<br>modulation equipment,<br>diode or solar pumping<br>10,000 life hours                                  |
| Crystal       | 0.532µ         | 100MW                                  | 0.5-1%         |                                                                                                                             |
| GaAs          | 0.8-0.9µ       | 40MW                                   | 5-10%          | Life hours 5000 ,reliable,<br>small, rugged, compact,<br>directly and easily<br>modulated<br>Easily combined into<br>arrays |

#### Laser commonly used in satellite communication

| LASER<br>TYPE              | WAVELE<br>NGTH | AVERA<br>GE<br>POWE<br>R<br>OUTPU<br>T | EFFICIEN<br>CY | CHARACTERISTICS                                                                                                    |
|----------------------------|----------------|----------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------|
| CO2(gas laser)             | 1.06 µ         | 1-2W                                   | 10-15%         | Life hours 20,000 used in<br>IR range, detectors are<br>poor,<br>Uses a discharge tube,<br>modulation is difficult |
| HeNe<br>(Helium –<br>Neon) | ο.63μ          | 10MW                                   | 1%             | Life hours 50,000.requires<br>external modulation, has<br>gas tube ,is power limited<br>and is inefficient         |

#### MODULATORS

- Direct intensity modulation
- Driving current is varied in accordance with the type of modulation

#### Various optical laser modulation method

| Modulation<br>type    | Analog                  | pulse                         | digital                                           |
|-----------------------|-------------------------|-------------------------------|---------------------------------------------------|
| Information<br>Signal | Time<br>Continuous      | Time Continuous<br>Or sampled | Time sampling                                     |
| Carrier Parameter     | Continuous              | Continuous<br>Or Quantized    | Quantized or coded                                |
| Example               | Intensity<br>modulation | Pulse intensity<br>modulation | Pulse code<br>modulation,<br>intensity modulation |

#### ANTENNA

- Conventional Telescopes
- Size and geometry as per the wavelength and geometry
- Narrow light beams
- Lensing system for transmission and focusing

# **Optical Antenna Transmission**





## Optical satellite link reciever

- telescope: focus the optical signal on to the photo detector
- Optical filter: eliminate back ground radiation that is not of same wavelength as the optical signal

#### **Optical detection**

- Direct detection System
- Heterodyne system





#### Heterodyne receiver

• Optical receiver field view:

Field arriving angles over which lenses will focus the impinging field onto the photo detector surface
Detector area and focal length
Ωfv= Ad/f<sup>2</sup>c=Ad/Ar=(Ad/λ<sup>2</sup>)(λ<sup>2</sup>/Ar)
(λ<sup>2</sup>/Ar) diffraction limited field of view

#### Heterodyne receiver

- P-I-N diode and avalanche photo diode
- Detection efficiency, gain, responsivity and bandwidth
- Wave length dependent, material used for photo emission
- Detected count rate of optical receiver

 $Ns=(\eta/hfo)Pr$ 

#### Photo detector

- Gain is increased by cascading photoemissive surface- noise increases
- Excess noise factor  $F = 1 + \sigma^2_{d} / (G)^2$
- G <u>m</u>ean gain
- $\sigma_d^2$  gain variance
- Responsivity : current produced for a given output
- R=e $\eta$  G /hf<sub>o</sub>

#### Photo detector

- $Ns(w)=G^2FeRP$
- $Ndc(w)=eI_{dc}$
- Nt(w)=  $4KT_{eq}^{o}/R_{L}$
- R<sub>L</sub> is impedance load
- T<sup>o</sup><sub>eq</sub> noise equivalent temperature
- Intensity modulation so s(t) information wave form modulated on the laser field
- $\Pr(t) = \Pr[1 + \beta s(t)]$

#### Photo detector

- After detection photo detector current will be
- $i(t) = R[Pr(t) + Pb] + i_{sn}(t) + i_{dc}(t) + i_{i}(t)$
- Ps=(RPrβ)<sup>2</sup> signal power
- Pn=N<sub>o</sub> (2Bm) total noise power
- SNR=Ps/Pn
- =  $(RPr\beta)^2 / [G^2 FeR(Pr+Pb) + eI_{dc} + 2KT_{eq}^o / R_L] 2Bm$