Lecture 21

PRINCIPLES OF SATELLITE COMMUNICATION

INTRODUCTION

a)Transmission at frequencies in 10¹⁴ b)Advantage

- Greater bandwidth
- Smaller beam divergence angles
- Smaller antennas

c)Modes of communication

- Aerial
- Fiber optical communication
- Optical computer

ARIEL

- Ariel :data and images are transferred using low power beams
- Impossible to jam by known means
- Weather dependent
- Clear day several miles
- Rain ,fog ,mist -- limited to shorter distance

Fiber optical communication& optical computers

- Guided media
- 4 Giga bits of information/sec over a span of 120Km
 Optical computers
- I. Light is used instead of electrical circuit
- II. Light can be encoded with much more information
- III. Zero resistance to flow ,more information than the equivalent sized electric circuit
- IV. Optical signal can be used in parallel

- Communication between the satellite themselves
- Can not be used between earth station and geostationary satellite being atmospheric dependent

LINK ANALYSIS Atmospheric Effects:

- Attenuation due to energy absorption
- Beam spreading due to scattering of light waves
- Beam bending due to refocusing of optical beams
- Beam break up due to loss of coherence

ATMOSPHERIC

- Dependent on wavelength
- Dependent on elevation angle

Complete link design

- Up link and downlink RF is used to satellite
- Two satellite cross link (optical link)
- RF up link wave form

$$s(t) = u(t) + n_u(t)$$

$$u(t) = uplinkcarrier$$

$$n_u(t) = uplinkNoiseandInterference$$

$\mathsf{P}(\mathsf{t}) = \mathsf{P}_{\mathsf{r}}\left(1 + \beta \mathsf{s}\left(\mathsf{t}\right)\right)$

 P_r is average power and β is intensity modulation $\beta \le 1$ The receiving satellitereceives the signal by photo detecting it the photo detector detects the intensity modulated signal as $R[\beta P_r s(t)] = R\beta \beta_r [u(t) + n_u(t)]$

R = photo detector responsitivity

$$P_{s} = \alpha_{s}^{2}P_{t}[(R\beta(r)^{2}P_{cu}]I]$$

$$Pns = \alpha_{n}^{2}P_{t}[(R\beta(r)^{2}P_{nu} + P_{PD})]L$$

 α is signal and noise suppression Pns $\,$ =total downlink retransmitted noise power $\,$

L is the downlink losses

Pcu is the uplinkpower of u(t)

Ppd is photo detector noise

Pnu additional noise by the down link

$$(C/N)_{T} = \frac{P_{s}}{P_{ns} + P_{nd}}$$

$$(C/N)_{u} = \frac{P_{cu}}{P_{nu}}$$

$$(C/N)_{op} \approx \frac{P_{s}}{P_{PD}}$$

$$(C/N)_{r} \approx \frac{LP_{t}\alpha^{2}}{P_{nd}}$$

$$\alpha_{s}^{2} = \left[1 + \left(\frac{1}{C./N}\right)_{op}\right]^{-1}$$

$$(C/N)_{T} = \left[(C/N)_{u}^{-1} + (C/N)_{op}^{-1} + (C/N)_{r}^{-1}\right]$$

Satellite beam and acquisition, tracking and pointing

- Beam is narrow
- Pointing problem
- Pointing within the pointing error±θc radians
- Optical beacon(unmodulated light source)
- Transmitter satellite receives the beacon from the receiving satellite
- Transmits its modulated laser beam back to the receiving satellite
- Angle of drifting of the receiving satellite(point ahead angle)