Lecture 19

PRINCIPLES OF SATELLITE COMMUNICATION

IS-95 CDMA

2

- Direct Sequence Spread Spectrum Signaling on Reverse and Forward Links
- Each channel occupies 1.25 MHz

Spreading Codes in IS-95

3

Orthogonal Walsh Codes

- To separate channels from one another on forward link
- Used for 64-ary orthogonal modulation on reverse link.

• PN Codes

- Decimated version of long PN codes for scrambling on forward link
- Long PN codes to identify users on reverse link
- Short PN codes have different code phases for different base stations

Reverse Link Modulation

- The signal is spread by the short PN code modulation (since it is clocked at the same rate)
- Zero offset code phases of the short PN code are used for all mobiles
- The long code PN sequence has a user distinct phase offset.

Power Control in CDMA

10

- CDMA goal is to maximize the number of simultaneous users
- Capacity is maximized by maintaining the signal to interference ratio at the minimum acceptable
- Power transmitted by mobile station must be therefore controlled
 - Transmit power enough to achieve target BER: no less no more

Two factors important for power control

Propagation loss

× due to propagation loss, power variations up to 80 dB

× a high dynamic range of power control required

Channel Fading

- × average rate of fade is one fade per second per mile hour of mobile speed
- × power attenuated by more than 30 dB
- × power control must track the fade

Power Control on Forward Link and Reverse Link

• On Forward Link

× to send just enough power to reach users at the cell edge

• On Reverse Link

× to overcome the 'near-far' problem in DS-CDMA

Types of Power Control

13

• Open Loop Power Control (on FL)

- × Channel state on the FL estimated by the mobile
 - measuring the signal strength of the pilot channel
- × RL transmit power made inversely proportional to FL power measured
- Mobile Power = Constant Received power (dBm) (dBm) (dBm)
- Works well if FL and RL are highly correlated
 o slowly varying distance and propagation losses
 o not true for fast Rayleigh Fading.

Closed Loop Power Control (on RL)

- Measurement of signal strength on FL as a rough estimate
- Base station measures the received power on RL
- Measured signal strength compared with the target Eb/No (power control threshold)
- Power control command is generated
 x asking mobile to increase/decrease
- Must be done at fast enough a rate (approx 10 times the max Doppler spread) to track multipath fading

Outer Loop Power Control

15

• Frame error rate (FER)is measured

• Power control threshold is adjusted at the base station

Power Control in IS-95A

- At 900 MHz and 120 km/hr mobile speed Doppler shift =100Hz
- In IS 95-A closed loop power control is operated at 800 Hz update rate
- Power control bits are inserted ('punctured') into the interleaved and encoded traffic data stream
- Power control step size is +/- 1 dB
- Power control bit errors do not affect performance much

Diversity Techniques in CDMA

Rationale for Diversity:-

if 'p' is the probability that a given path in a multipath environment is below a detection threshold, then the probability is 'p^L' that all 'L' paths in an Lpath multi-path situation are below the threshold

Diversity Techniques

18

Frequency Diversity

- transmission of signal on two frequencies spaced further apart than the coherence bandwidth
- inherent in spread spectrum system if the chip rate is greater than the coherence bandwidth

• Time Diversity

- transmission of data at different times
- repeating the data 'n' times
- o interleaving and error correcting codes used in IS-95

Space Diversity

- Multi-path tracking (Path Diversity)
- Transmission space diversity
 - × Signal can be emitted from multiple antennas at a single cell site