Lecture 18

PRINCIPLES OF SATELLITE COMMUNICATION

Spreading Codes

- It is desired that each user's transmitted signal appears noise like and random. Strictly speaking, the signals should appear as Gaussian noise
- Such signals must be constructed from a finite number of randomly preselected stored parameters; to be realizable
- The same signal must be generated at the receiver in perfect synchronization
- We limit complexity by specifying only one bit per sample i.e. a binary sequence

Desirable Randomness Properties

- Relative frequencies of and should be $1 / 2$ (Balance property)
- Run lengths of zeros and ones should be (Run property):
- Half of all run lengths should be unity
- One - quarter should be of length two
- One - eighth should be of length three
- A fraction $1 / 2^{n}$ of all run lengths should be of length n for all finite n

Desirable Randomness Properties (contd...)

- If the random sequence is shifted by any nonzero number of elements, the resulting sequence should have an equal number of agreements and disagreements with the original sequence

PN Sequences

- A deterministically generated sequence that nearly satisfies these properties is referred to as a Pseudorandom Sequence (PN)
- Periodic binary sequences can be conveniently generated using linear feedback shift registers (LFSR)
- If the number of stages in the LFSR is $\mathrm{r}, \mathrm{P} \leq 2^{\mathrm{r}}-1$ where P is the period of the sequence

PN Sequences (contd...)

- However, if the feedback connections satisfy a specific property, $\mathrm{P}=2^{\mathrm{r}}-1$. Then the sequence is called a Maximal Length Shift Register (MLSR) or a PN sequence.
- Thus if $\mathrm{r}=15, \mathrm{P}=32767$.

Randomness Properties of PN Sequences

Of the $2^{\mathrm{r}}-1$ terms, $2^{\mathrm{r}-1}$ are one and $2^{\mathrm{r}-1}-1$ are zero. Thus the unbalance is $1 / \mathrm{P}$. For $\mathrm{r}=50 ; 1 / \mathrm{P} \cong 10^{-15}$

Relative frequency of run length n (zero or ones) is $1 / 2^{\mathrm{n}}$ for $\mathrm{n} \leq \mathrm{r}-1$ and $1 /\left(2^{\mathrm{r}}-1\right)$ for $\mathrm{n}=\mathrm{r}$

- One run length each of $r-1$ zeros and r ones occurs. There are no run lengths for $\mathrm{n}>\mathrm{r}$

The number of disagreements exceeds the number of agreements by unity. Thus again the discrepancy is $1 / p$

Randomness Properties of PN Sequences (contd.) (8)

Autocorrelation function

Randomness Properties of PN Sequences (contd...)

Power Spectral Density

SR Implementation of PN Sequences

- The feedback connection should correspond to a primitive polynomial.
- Primitive polynomials of every degree exist. The number of primitive polynomials of degree r is given by :
- Simple Shift Register Generator (SSRG) - Fibonacci configuration.
- Modular Shift Register Generator (MSRG) - Galois configuration.

SR Implementation of PN Sequences

SSRG configuration of $f(x)=1+c_{1} x+c_{2} x^{2}+\ldots . .+c_{i} x^{i}+\ldots+c_{n-1} x^{n-1}+x^{n}$

MSRG configuration of $f(x)=1+c_{1} x+c_{2} x^{2}+\ldots . .+c_{i} x^{i}+\ldots+c_{n-1} x^{n-1}+x^{n}$

PN Sequences Specified in IS-95

- A PN sequence $(r=42)$ is used to scramble the user data with a different code shift for each user
- The 42-degree characteristic polynomial is given by:
$x^{42}+x^{41}+x^{40}+x^{39}+x^{37}+x^{36}+x^{35}+x^{32}+x^{26}+x^{25}+x^{24}+x^{23}+x^{21}$ $+X^{20}+X^{17}+x^{16}+X^{15}+X^{11}+X^{9}+X^{7}+1$
- The period of the long code is $2^{42}-1 \approx 4.4^{*} 10^{2}$ chips and lasts over 41 days

PN Sequences Specified in IS-95 (contd...)

- Two PN sequences ($\mathrm{r}=15$) are used to spread the quadrature components of the forward and reverse link waveforms
- The characteristic polynomials are given by :
$x^{15}+x^{10}+x^{8}+X^{7}+x^{6}+x^{2}+x$
$x^{15}+x^{12}+x^{11}+x^{10}+x^{9}+x^{5}+x^{4}+x^{3}+1$
- The period of the short code is: $2^{15}-1=32767$ chips $\equiv 80 / 3 \mathrm{~ms}$

Orthogonal Spreading Codes - Walsh

Walsh functions of order N are defined as a set of N time functions denoted as $\left\{\mathrm{W}_{\mathrm{j}}(\mathrm{t}) ; \mathrm{t} \in(\mathrm{o}, \mathrm{T}), \mathrm{j}=\mathrm{o}, 1, \ldots \mathrm{~N}-1\right\}$ such that:

- $\mathrm{W}_{\mathrm{j}}(\mathrm{t})$ takes on the values $\{+1,-1\}$ except at the jumps, where it takes the value zero
- $W_{j}(t)=1$ for all j
- $\mathrm{W}_{\mathrm{j}}(\mathrm{t})$ has precisely j sign changes in the interval (o, T)
- Each $W_{j}(t)$ is either even or odd with respect to $T / 2$ i.e. the mid point

