Lecture 8

PRINCIPLES OF SATELLITE COMMUNICATION

Relation between S/N &C/N

- Performance of FM receiver is judged on the basis of variation of output (S/N)o as function of (C/N) is measured at the input to the limiter.
- The second term on \mathbb{R} \mathbb{HS}^{i} gives improvement by FM in return for \mathbb{R} \mathbb{B}_{OdB}^{K} \mathbb{S} a \mathbb{C}^{i} if ic $\mathbb{E}^{10\log \frac{3}{2}m^{2}}$
- As (C/N)i decreases (S/N)o falls more sharply than (C/N)i as seen in the figure below.

Threshold (C/N)i for FM detector

Contt----

• With phase detector

$$\frac{\left(\frac{S}{N}\right)_{O}}{\left(\frac{C}{N}\right)} = (\Delta\phi)^{2}$$

- $\Delta \phi = \text{peak phase deviation}$
- For non-sinusoidal modulating signal spectrum (o to fmax Hz)

$$\left(\frac{S}{N}\right)_{0} = \left(\frac{C}{N}\right)_{i} \frac{3B}{2f_{\max}} \left(\frac{\Delta f_{peak}}{f_{\max}}\right)^{2}$$

$$Contt---$$

$$B = 2f_{max} (1+m)$$

$$m = \frac{\Delta f_{peak}}{f_{max}}$$

$$\left(\frac{S}{N}\right)_{0} = \left(\frac{C}{N}\right)_{i} * 3(1+m)m^{2}$$

For large m,3(1+m)m²≈3m²
m<<1,3(1+m)m²≈3m²

S/N CAN BE IMPROVED

- The above eqn. shows that S/N can be improved by INCREASING THE CARRIER POWER (by increasing level of modulating baseband signal)
- Pre-emphasis at the transmitting system
- De-emphasis at the demodulating network

Power Spectral density

- In audio baseband signal power spectral density is relatively high in low frequency range and falls of rapidly at higher frequencies
- Thus in carrier modulated by audio signal , power spectral density of side bands near the carrier is highest and relatively small near the limits of allocated transmission band

GNAL IN SATELLITE • CHANNEL IS LOCATED AT THE HIGH FREQUENCY END OF THE MULTIPLEXED SIGNAL