Course Name: Analysis and Desigin of Algorithms

Topics to be covered

- NP-Completeness
- Travelling salesman problem
- P and NP

NP-Completeness

- So far we've seen a lot of good news!
- Such-and-such a problem can be solved quickly (i.e., in close to linear time, or at least a time that is some small polynomial function of the input size)
- NP-completeness is a form of bad news!
- Evidence that many important problems can not be solved quickly.
- NP-complete problems really come up all the time!

Why should we care?

- Knowing that they are hard lets you stop beating your head against a wall trying to solve them...
- Use a heuristic: come up with a method for solving a reasonable fraction of the common cases.
- Solve approximately: come up with a solution that you can prove that is close to right.
- Use an exponential time solution: if you really have to solve the problem exactly and stop worrying about finding a better solution.

Optimization \& Decision Problems

- Decision problems
- Given an input and a question regarding a problem, determine if the answer is yes or no
- Optimization problems
- Find a solution with the "best" value
- Optimization problems can be cast as decision problems that are easier to study
- E.g.: Shortest path: G = unweighted directed graph
- Find a path between u and v that uses the fewest edges
- Does a path exist from u to v consisting of at most κ, edges?

Algorithmic vs Problem Complexity

- The algorithmic complexity of a computation is some measure of how difficult is to perform the computation (i.e., specific to an algorithm)
- The complexity of a computational problem or task is the complexity of the algorithm with the lowest order of growth of complexity for solving that problem or performing that task.
- e.g. the problem of searching an ordered list has at most Ign time complexity.
- Computational Complexity: deals with classifying problems by how hard they are.

Class of "P" Problems

- Class P consists of (decision) problems that are solvable in polynomial time
- Polynomial-time algorithms
- Worst-case running time is $O\left(n^{k}\right)$, for some constant k
- Examples of polynomial time:
- $O\left(n^{2}\right), O\left(n^{3}\right), O(1), O(n \lg n)$
- Examples of non-polynomial time:
- O(2n), O(n $\left.n^{n}\right), O(n!)$

Tractable/Intractable Problems

- Problems in P are also called
- Problems not in P are intractable or unsol
- Can be solved in reasonable time only for small inputs
- Or, can not be solved at all
- Are non-polynomial algorithms always worst than polynomial algorithms?
- $n^{1,000,000}$ is technically tractable, but really impossible - $n^{\log \log \log n}$ is technically intractable, but easy

Example of Unsolvable Problem

- Turing discovered in the 1930's that there are problems unsolvable by any algorithm.
- The most famous of them is the halting problem
- Given an arbitrary algorithm and its input, will that algorithm eventually halt, or will it continue forever in an "infinite loop?"

Examples of Intractable Problems

Hamiltonian Paths

Optimization Problem: Given a graph, find a path that passes through every vertex exactly once

Decision Problem: Does a given graph have a Hamiltonian Path ?

Traveling Salesman
Optimization Problem: Find a minimum weight Hamiltonian Path
Decision Problem: Given a graph and an integer k, is there a Hamiltonian Path with a total weight at most k ?

Intractable Problems

- Can be classified in various categories based on their degree of difficulty, e.g.,
- NP
- NP-complete
- NP-hard
- Let's define NP algorithms and NP problems ...

Nondeterministic algorithm = two stage procedure:

1) Nondeterministic ("guessing") stage:
generate randomly an arbitrary string that can be thought of as a candidate solution ("certificate")
2) Deterministic ("verification") stage:
take the certificate and the instance to the problem and returns
YES if the certificate represents a solution
NP algorithms (Nondeterministic polynomial)
verification stage is polynomial

Class of "NP" Problems

- Class NP consists of problems that could be solved by NP algorithms
- i.e., verifiable in polynomial time
- If we were given a "certificate" of a solution, we could verify that the certificate is correct in time polynomial to the size of the input
- Warning: NP does not mean "non-polynomial"

Hamiltonian Cycle

- Given: a directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, determine a simple cycle that contains each vertex in V
- Each vertex can only be visited once
- Certificate:
- Sequence: $\left\langle\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \ldots, \mathrm{v}_{|\mathrm{V}|}\right\rangle$

hamiltonian

not
hamiltonian

Is $P=N P ?$

- Any problem in P is also in NP:

$$
P \subseteq N P
$$

- The big (and open question) is whether $\mathrm{NP} \subseteq \mathrm{P}$ or $\mathrm{P}=$ NP
- i.e., if it is always easy to check a solution, should it also be easy to find a solution?
- Most computer scientists believe that this is false but we do not have a proof ...

NP-Completeness (informally)

- NP-complete problems are defined as the hardest
 problems in NP
- Most practical problems turn out to be either P or NPcomplete.
- Study NP-complete problems ...

Reductions

- Reduction is a way of saying that one problem is "easier" than another.
- We say that problem A is easier than problem B, (i.e., we write "A $\leq \mathrm{B}$ ")
if we can solve A using the algorithm that solves B.
- Idea: transform the inputs of A to inputs

Polynomial Reductions

Given two problems A, B, we say that A is polynomially
reducible to $\mathrm{B}\left(\mathrm{A} \leq_{p} \mathrm{~B}\right)$ if:

1. There exists a function f that converts the input of A to inputs of B in polynomial time
2. $A(i)=Y E S \Leftrightarrow B(f(i))=Y E S$

NP-Completeness (formally)

- A problem B is NP-complete if:
(1) $B \in N P$
(2) $A \leq_{p} B$ for all $A \in N P$

- If B satisfies only property (2) we say that B is NP-hard
- No polynomial time algorithm has been discovered for an NPComplete problem
- No one has ever proven that no polynomial time algorithm can exist for any NP-Complete problem

Implications of Reduction

- If $\mathrm{A} \leq_{p} \mathrm{~B}$ and $\mathrm{B} \in \mathrm{P}$, then $\mathrm{A} \in \mathrm{P}$
- if $A \leq_{p} B$ and $A \notin P$, then $B \notin P$

Proving Polynomial Time

1. Use a polynomial time reduction algorithm to transform A into B
2. Run a known polynomial time algorithm for B
3. Use the answer for B as the answer for A

- Prove that the problem B is in NP
- A randomly generated string can be checked in polynomial time to determine if it represents a solution
- Show that one known NP-Complete problem can be transformed to B in polynomial time
- No need to check that all NP-Complete problems are reducible to B

Revisit "Is P = NP?"

Theorem: If any NP-Complete problem can be solved in polynomial time \Rightarrow then $P=N P$.

P \& NP-Complete Problems

- Shortest simple path
- Given a graph $G=(V, E)$ find a shortest path from a source to all other vertices
- Polynomial solution: O(VE)
- Longest simple path
- Given a graph $G=(V, E)$ find a longest path from a source to all other vertices
- NP-complete

P \& NP-Complete Problems

- Euler tour
- $G=(V, E)$ a connected, directed graph find a cycle that traverses each edge of G exactly once (may visit a vertex multiple times)
- Polynomial solution O(E)
- Hamiltonian cycle
- $G=(V, E)$ a connected, directed graph find a cycle that visits each vertex of G exactly once
- NP-complete

Satisfiability Problem (SAT)

- Satisfiability problem: given a logical expression Φ, find an assignment of values (F, T) to variables x_{i} that causes Φ to evaluate to T

$$
\Phi=\mathrm{x}_{1} \vee \neg \mathrm{x}_{2} \wedge \mathrm{x}_{3} \vee \neg \mathrm{x}_{4}
$$

SAT was the first problem shown to be NP-complete!

CFN Satisfiability

- CFN is a special case of SAT
- Φ is in "Conjuctive Normal Form" (CNF)
"AND" of expressions (i.e., clauses)
Each clause contains only "OR"s of the variables and their complements

$$
\text { E.g.: } \Phi=\left(\mathrm{x}_{1} \vee \mathrm{x}_{2}\right) \wedge\left(\mathrm{x}_{1} \vee \neg \mathrm{x}_{2}\right) \wedge\left(\neg \mathrm{x}_{1} \vee \neg \mathrm{x}_{2}\right)
$$

clauses

3-CNF Satisfiability

A subcase of CNF problem:

- Contains three clauses
- E..g.:

$$
\begin{aligned}
& \Phi=\left(x_{1} \vee \neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{3} \vee x_{2} \vee x_{4}\right) \wedge \\
& \left(\neg x_{1} \vee \neg x_{3} \vee \neg x_{4}\right)
\end{aligned}
$$

- 3-CNF is NP-Complete
- Interestingly enough, 2-CNF is in P!

Clique

Clique Problem:

- Undirected graph G = (V, E)
- Clique: a subset of vertices in V all connected to each other by edges in E (i.e., forming a complete graph)
- Size of a clique: number of vertices it contains

Optimization problem:

- Find a clique of maximum size

Decision problem:

- Does G have a clique of size k?

Clique(G, 2) = YES Clique (G, 3) = NO

Clique(G, 3) = YES Clique $(G, 4)=$ NO

Clique Verifier

- Given: an undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- Problem: Does G have a clique of size k ?
- Certificate:
- A set of k nodes
- Verifier:

- Verify that for all pairs of vertices in this set there exists an edge in E

$3-C N F \leq_{p}$ Clique

- Idea:
- Construct a graph G such that Φ is satisfiable only if G has a clique of size k

NP-naming convention

- NP-complete - means problems that are 'complete' in NP, i.e. the most difficult to solve in NP
- NP-hard - stands for 'at least' as hard as NP (but not necessarily in NP);
- NP-easy - stands for 'at most' as hard as NP (but not necessarily in NP);
- NP-equivalent - means equally difficult as NP, (but not necessarily in NP);

Examples NP-complete and

NP-hard problems

Hamiltonian Paths

NP-complete
Optimization Problem: Given a graph, find a path that passes through every vertex exactly once

Decision Problem: Does a given graph have a Hamiltonian Path ?

Traveling Salesman
NP-hard

Optimization Problem: Find a minimum weight Hamiltonian Path
Decision Problem: Given a graph and an integer k, is there a Hamiltonian Path with a total weight at most k ?

