


 

• Decision and Optimization Problems 

• Polynomial-Time Reducibility 

• NP-Hardness and NP-Completeness 

• Examples: TSP, Circuit-SAT, Knapsack 

• Polynomial-Time Approximation Schemes 

 



• Decision Problem: computational problem with intended 
output of “yes” or “no”, 1 or 0 

• Optimization Problem: computational problem where we 
try to maximize or minimize some value 

• Introduce parameter k and ask if the optimal value for the 
problem is a most or at least k. Turn optimization into 
decision 



• Deterministic in nature 

• Solved by conventional computers in polynomial time 
• O(1)   Constant 

• O(log n)  Sub-linear 

• O(n)   Linear 

• O(n log n)  Nearly Linear 

• O(n2)   Quadratic 

• Polynomial upper and lower bounds 



• Non-deterministic part as well 

• choose(b): choose a bit in a non-deterministic 

way and assign to b 

• If someone tells us the solution to a problem, we 

can verify it in polynomial time 

• Two Properties: non-deterministic method to 

generate possible solutions, deterministic 

method to verify in polynomial time that the 

solution is correct. 



• P is a subset of NP 

• “P = NP”? 

• Language L is in NP, complement of L is in co-NP 

• co-NP ≠ NP 

• P ≠ co-NP 

 



• Language L is polynomial-time reducible to language M if 

there is a function computable in polynomial time that 

takes an input x of L and transforms it to an input f(x) of 

M, such that x is a member of L if and only if f(x) is a 

member of M. 

• Shorthand, LpolyM means L is polynomial-time reducible 

to M 

 



• Language M is NP-hard if every other language L in NP 

is polynomial-time reducible to M 

• For every L that is a member of NP, LpolyM 

• If language M is NP-hard and also in the class of NP 

itself, then M is NP-complete 

 



• Restriction: A known NP-complete problem M is 
actually just a special case of L 

• Local replacement: reduce a known NP-
complete problem M to L by dividing instances of 
M and L into “basic units” then showing each unit 
of M can be converted to a unit of L 

• Component design: reduce a known NP-
complete problem M to L by building components 
for an instance of L that enforce important 
structural functions for instances of M. 



• For each two cities, an integer cost is given to travel from 
one of the two cities to the other. The salesperson wants 
to make a minimum cost circuit visiting each city exactly 
once. 
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• Take a Boolean circuit with a single output node 
and ask whether there is an assignment of 
values to the circuit’s inputs so that the output is 
“1” 
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• Given s and w can we translate a subset of rectangles to 
have their bottom edges on L so that the total area of the 
rectangles touching L is at least w? 
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• Polynomial-Time Approximation Schemes 

• Much faster, but not guaranteed to find the best solution 

• Come as close to the optimum value as possible in a 

reasonable amount of time 

• Take advantage of rescalability property of some hard 

problems 

 



• Effective for decision problems 

• Systematically traverse through possible paths to locate 

solutions or dead ends 

• At the end of the path, algorithm is left with (x, y) pair. x is 

remaining subproblem, y is set of choices made to get to 

x 

• Initially (x, Ø) passed to algorithm 



Algorithm Backtrack(x): 
    Input: A problem instance x for a hard problem 
    Output: A solution for x or “no solution” if none exists 
    F  {(x, Ø)}. 
    while F ≠ Ø do 
        select from F the most “promising” configuration (x, y) 
        expand (x, y) by making a small set of additional choices 
        let (x1, y1), …, (xk, yk) be the set of new configurations. 
        for each new configuration (xi, yi) do 
            perform a simple consistency check on (xi, yi) 
            if the check returns “solution found” then 
                return the solution derived from (xi, yi) 
            if the check returns “dead end” then 
                discard the configuration (xi, yi) 
            else 
                F  F U {(xi, yi)}. 
    return “no solution” 



• Effective for optimization problems 

• Extended Backtracking Algorithm 

• Instead of stopping once a single solution is found, 

continue searching until the best solution is found 

• Has a scoring mechanism to choose most promising 

configuration in each iteration 



Algorithm Branch-and-Bound(x): 
    Input: A problem instance x for a hard optimization problem 
    Output: A solution for x or “no solution” if none exists 
    F  {(x, Ø)}. 
    b  {(+∞, Ø)}. 
    while F ≠ Ø do 
        select from F the most “promising” configuration (x, y) 
        expand (x, y), yielding new configurations (x1, y1), …, (xk, yk) 
        for each new configuration (xi, yi) do 
            perform a simple consistency check on (xi, yi) 
            if the check returns “solution found” then 
                if the cost c of the solution for (xi, yi) beats b then 
                    b  (c, (xi, yi)) 
                else 
                    discard the configuration (xi, yi) 
            if the check returns “dead end” then 
                discard the configuration (xi, yi) 
            else 
                 if lb(xi, yi) is less than the cost of b then 
                     F  F U {(xi, yi)}. 
                 else 
                     discard the configuration (xi, yi) 
    return b 



• Decision and Optimization Problems 

• P and NP 

• Polynomial-Time Reducibility 

• NP-Hardness and NP-Completeness 

• TSP, Circuit-SAT, Knapsack 

• PTAS 

• Backtracking/Branch-and-Bound 
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