

• Decision and Optimization Problems

• Polynomial-Time Reducibility

• NP-Hardness and NP-Completeness

• Examples: TSP, Circuit-SAT, Knapsack

• Polynomial-Time Approximation Schemes

• Decision Problem: computational problem with intended
output of “yes” or “no”, 1 or 0

• Optimization Problem: computational problem where we
try to maximize or minimize some value

• Introduce parameter k and ask if the optimal value for the
problem is a most or at least k. Turn optimization into
decision

• Deterministic in nature

• Solved by conventional computers in polynomial time
• O(1) Constant

• O(log n) Sub-linear

• O(n) Linear

• O(n log n) Nearly Linear

• O(n2) Quadratic

• Polynomial upper and lower bounds

• Non-deterministic part as well

• choose(b): choose a bit in a non-deterministic

way and assign to b

• If someone tells us the solution to a problem, we

can verify it in polynomial time

• Two Properties: non-deterministic method to

generate possible solutions, deterministic

method to verify in polynomial time that the

solution is correct.

• P is a subset of NP

• “P = NP”?

• Language L is in NP, complement of L is in co-NP

• co-NP ≠ NP

• P ≠ co-NP

• Language L is polynomial-time reducible to language M if

there is a function computable in polynomial time that

takes an input x of L and transforms it to an input f(x) of

M, such that x is a member of L if and only if f(x) is a

member of M.

• Shorthand, LpolyM means L is polynomial-time reducible

to M



• Language M is NP-hard if every other language L in NP

is polynomial-time reducible to M

• For every L that is a member of NP, LpolyM

• If language M is NP-hard and also in the class of NP

itself, then M is NP-complete



• Restriction: A known NP-complete problem M is
actually just a special case of L

• Local replacement: reduce a known NP-
complete problem M to L by dividing instances of
M and L into “basic units” then showing each unit
of M can be converted to a unit of L

• Component design: reduce a known NP-
complete problem M to L by building components
for an instance of L that enforce important
structural functions for instances of M.

• For each two cities, an integer cost is given to travel from
one of the two cities to the other. The salesperson wants
to make a minimum cost circuit visiting each city exactly
once.

3

1

1

1

2

2

3

4

1
2 2

1

2

2

4

4 1

5

1

i = 23

2

• Take a Boolean circuit with a single output node
and ask whether there is an assignment of
values to the circuit’s inputs so that the output is
“1”

Logic Gates

NOT

AND

OR 1

1

1 0 0

0

1 1

1

1

1

0

0

• Given s and w can we translate a subset of rectangles to
have their bottom edges on L so that the total area of the
rectangles touching L is at least w?

s

L

1

2

3
4

5 6

7

• Polynomial-Time Approximation Schemes

• Much faster, but not guaranteed to find the best solution

• Come as close to the optimum value as possible in a

reasonable amount of time

• Take advantage of rescalability property of some hard

problems

• Effective for decision problems

• Systematically traverse through possible paths to locate

solutions or dead ends

• At the end of the path, algorithm is left with (x, y) pair. x is

remaining subproblem, y is set of choices made to get to

x

• Initially (x, Ø) passed to algorithm

Algorithm Backtrack(x):
 Input: A problem instance x for a hard problem
 Output: A solution for x or “no solution” if none exists
 F  {(x, Ø)}.
 while F ≠ Ø do
 select from F the most “promising” configuration (x, y)
 expand (x, y) by making a small set of additional choices
 let (x1, y1), …, (xk, yk) be the set of new configurations.
 for each new configuration (xi, yi) do
 perform a simple consistency check on (xi, yi)
 if the check returns “solution found” then
 return the solution derived from (xi, yi)
 if the check returns “dead end” then
 discard the configuration (xi, yi)
 else
 F  F U {(xi, yi)}.
 return “no solution”

• Effective for optimization problems

• Extended Backtracking Algorithm

• Instead of stopping once a single solution is found,

continue searching until the best solution is found

• Has a scoring mechanism to choose most promising

configuration in each iteration

Algorithm Branch-and-Bound(x):
 Input: A problem instance x for a hard optimization problem
 Output: A solution for x or “no solution” if none exists
 F  {(x, Ø)}.
 b  {(+∞, Ø)}.
 while F ≠ Ø do
 select from F the most “promising” configuration (x, y)
 expand (x, y), yielding new configurations (x1, y1), …, (xk, yk)
 for each new configuration (xi, yi) do
 perform a simple consistency check on (xi, yi)
 if the check returns “solution found” then
 if the cost c of the solution for (xi, yi) beats b then
 b  (c, (xi, yi))
 else
 discard the configuration (xi, yi)
 if the check returns “dead end” then
 discard the configuration (xi, yi)
 else
 if lb(xi, yi) is less than the cost of b then
 F  F U {(xi, yi)}.
 else
 discard the configuration (xi, yi)
 return b

• Decision and Optimization Problems

• P and NP

• Polynomial-Time Reducibility

• NP-Hardness and NP-Completeness

• TSP, Circuit-SAT, Knapsack

• PTAS

• Backtracking/Branch-and-Bound

• A.K. Dewdney, The New Turning Omnibus, pp. 276-281,

357-362, Henry Holt and Company, 2001.

• Goodrich & Tamassia, Algorithm Design, pp. 592-637,

John Wiley & Sons, Inc., 2002.

