


Topics to be covered

Decision and Optimization Problems
Polynomial-Time Reduclibility
NP-Hardness and NP-Completeness
Examples: TSP, Circuit-SAT, Knapsack
Polynomial-Time Approximation Schemes




Decision and Optimization
Problems

« Decision Problem: computational problem with intended
output of “yes” or “no”, 1 or O

« Optimization Problem: computational problem where we
try to maximize or minimize some value

* Introduce parameter k and ask if the optimal value for the
problem is a most or at least k. Turn optimization into
decision




Complexity Class P

« Deterministic in nature
« Solved by conventional computers in polynomial time

* 0O(1) Constant
* O(log n) Sub-linear

* O(n) Linear

* O(nlog n) Nearly Linear

* O(n?) Quadratic

« Polynomial upper and lower bounds




Complexity Class NP

* Non-deterministic part as well

« choose(b): choose a bit in a non-deterministic
way and assignto b

* If someone tells us the solution to a problem, we
can verify it in polynomial time

* Two Properties: non-deterministic method to
generate possible solutions, deterministic
method to verify in polynomial time that the
solution is correct.




Relation of P and NP

IS In cO-NP




Polynomial-Time Reducibility

« Language L is polynomial-time reducible to language M if
there Is a function computable in polynomial time that
takes an input x of L and transforms it to an input f(x) of
M, such that x iIs a member of L if and only if f(x) is a
member of M.

« Shorthand, LP°YM means L is polynomial-time reducible
to M




NP-Hard and NP-Complete

- Language M is NP-hard if every other language L in NP
IS polynomial-time reducible to M

« For every L that is a member of NP, LPoYM

* |If language M is NP-hard and also in the class of NP
itself, then M is NP-complete

—




NP-Hard and NP-Complete

* Restriction: A known NP-complete problem M is
actually just a special case of L

 Local replacement: reduce a known NP-
complete problem M to L by dividing instances of
M and L into “basic units” then showing each unit
of M can be converted to a unit of L

« Component design: reduce a known NP-
complete problem M to L by building components
for an instance of L that enforce important
structural functions for instances of M.




TSP

* For each two cities, an integer cost Is given to travel from
one of the two cities to the other. The salesperson wants

to make a minimum cost circuit visiting each city exactly
once.




Circuit-SAT

» Take a Boolean circuit with a single output node
and ask whether there Is an assignment of

values to the circuit’s inputs so that the output is
“1 b




Knapsack

* Given s and w can we translate a subset of rectangles to
have their bottom edges on L so that the total area of the
rectangles touching L is at least w?




PTAS

Polynomial-Time Approximation Schemes
Much faster, but not guaranteed to find the best solution

Come as close to the optimum value as possible in a
reasonable amount of time

Take advantage of rescalability property of some hard
problems




Backtracking

- Effective for decision problems
« Systematically traverse through possible paths to locate
solutions or dead ends

* At the end of the path, algorithm is left with (x, y) pair. x is
remaining subproblem, y is set of choices made to get to

X
* Initially (x, @) passed to algorithm




Algorithm Backtrack(x):
Input: A problem instance x for a hard problem
Output: A solution for x or "no solution” if none exists
F < {(x, 9)5.
while £ = @ do
select from £ the most “promising” configuration (x, y)
expand (O, V) by making a small set of additional choices
et (X7, V), -, (X, Vi) bE the set of new configurations.
for each new configuration (x;, y;) do
PErfiorm a simple consistency check on (x;, V;)
iIf the check returns “solution found” then
return the solution derived from (x;, v;)
iIf the check returns “dead end” then
discard the configuration (x;, v;)
else
£ FUL0G v
return "no solution”




Branch-and-Bound

- Effective for optimization problems
- Extended Backtracking Algorithm

* Instead of stopping once a single solution is found,
continue searching until the best solution is found

« Has a scoring mechanism to choose most promising
configuration in each iteration




Algorithm Branch-and-Bound(x):
Input: A problem instance x for a hard optimization problem
Output: A solution for x or "no solution” if none exists
F < {(x, 9)J.
b < {(+00, O)F.
while £ + @ do
select from £ the most “promising” configuration (x, y)
expand (X, v), vielding new configurations (x;, V1), ---» (X&, Vi)
for each new configuration (x;, ;) do
PEerfiorm a simple consistency: check on (x;, v;)
If the check returns “solution found” then
If. the cost ¢ ofi the solution for (X;, y;) beats b then
b — (¢, (x5, i)
else
discard the configuration (x;, ¥;)
iIf the check returns “dead end” then
discard the configuration (X;, ¥;)
else
iIf Ib(x;, v;) is less than the cost of b then
F—FU {0, )}
else
discard the configuration (x;, v;)
return b




Summary

» Decision and Optimization Problems
P and NP

Polynomial-Time Reduclibility
NP-Hardness and NP-Completeness
TSP, Circuit-SAT, Knapsack

PTAS
Backtracking/Branch-and-Bound




References

« A.K. Dewdney, The New Turning Omnibus, pp. 276-281,
357-362, Henry Holt and Company, 2001.

« Goodrich & Tamassia, Algorithm Design, pp. 592-637,
John Wiley & Sons, Inc., 2002.




