

Topics to be covered

Traveling Salesperson Problem

* You have to visit n cities
* You want to make the shortest trip

* How could you do this?

- What if you had a machine that could guess?

Non-deterministic polynomial time

« Deterministic Polynomial Time: The TM takes at most
O(n°) steps to accept a string of length n

* Non-deterministic Polynomial Time: The TM takes at
most O(Nn°) steps on to accept a
string of length n

The Class P and the Class NP

- P={L|LIis accepted by a Turing Machine
In polynomial time }
« NP={L|Lis accepted by a Turing

Machine in polynomial time }

« They are sets of languages

Does Non-Determinism matter?

Finite Automata? Push Down Automata?

No! Yes!

DFA not= NFA
DFA = NFA = “

(PDA)

Progress

P = NP if every NP problem has a deterministic
polynomial algorithm

* We could find an algorithm for every NP problem
- Seems... hard...

« We could use polynomial time reductions to find the
“hardest” problems and just work on those

Reductions

Polynomial time reductions

 PARTITION = { n,,n,,... n, | we can split the integers into
two sets which sum to half }

« SUBSET-SUM = { <n,,n,,... n,,m> | there exists a subset
which sums to m }

« 1) If | can solve SUBSET-SUM, how can | use that to
solve an instance of PARTITION?

« 2) If | can solve PARTITION, how can | use that to solve
an instance of SUBSET-SUM?

Polynomial Reductions

1) Partition REDUCES to Subset-Sum
* Partition <, Subset-Sum

« 2) Subset-Sum REDUCES to Partition
* Subset-Sum <, Partition

« Therefore they are equivalently hard

onential time

NP-Completeness

* How ne NP-Complete?
' roblems in NP

Definition of NP-Complete

time reducible to Q

Getting Started

* How do you show that EVERY NP problem reduces to
Q7

* One way would be to already have an NP-Complete
problem and just reduce from that

Py

Pz \
—— * Mystery

P, . NP-Complete — Q)

P, / Problem

Reminder: Undecidability

 How do you show a language is undecidable?

« One way would be to already have an undecidable
problem and just reduce from that

—— * Halting

L, Problem

L4/

- ¢

SYA

« SAT ={f| fis a Boolean Formula with a satisfying
assignment }

p=(x1Vx1VIa) A A (X1 VxaV Iy

* |s SAT In NP?

Cook-Levin Theorem (1971)

« SAT is NP-Complete

If you want to see the proof it is Theorem 7.37
In Sipser (assigned reading!) or you can take
CS 660 — Graduate Theory. You are not
responsible for knowing the proof.

al Form, each
tisfiable }

NP-Complete

« To prove a problem is NP-Complete show a polynomial
time reduction from 3-SAT

« Other NP-Complete Problems:
- PARTITION
- SUBSET-SUM
- CLIQUE
* HAMILTONIAN PATH (TSP)
- GRAPH COLORING
- MINESWEEPER (and many more)

NP-Completeness Proof Method

* To show that Q is NP-Complete:
« 1) Show that Q is in NP

« 2) Pick an instance, R, of your favorite NP-Complete
problem (ex: ® in 3-SAT)

« 3) Show a polynomial algorithm to transform R into an
Instance of Q

Example: Clique

Reduce 3-SAT to Clique

* Pick an instance of 3-SAT, ®, with k clauses

« Make a vertex for each literal
 Connect each vertex to the literals in other clauses that
are not the negation

* Any k-cligue in this graph corresponds to a satisfying
assignment

Example: Independent Set

 INDEPENDENT SET = { <G,k> | where G has an
iIndependent set of size k }

* An independent set is a set of vertices that have no
edges

- How can we reduce this to clique?

Independent Set to

