Course Name: Analysis and Design of Algorithms

Topics to be covered

- NP-Completeness
- Travelling salesman problem
- Pand NP

Traveling Salesperson Problem

- You have to visit n cities
- You want to make the shortest trip
- How could you do this?
-What if you had a machine that could guess?

Non-deterministic polynomial time

- Deterministic Polynomial Time: The TM takes at most O(n^{c}) steps to accept a string of length n
- Non-deterministic Polynomial Time: The TM takes at most $\mathrm{O}\left(n^{c}\right)$ steps on to accept a string of length n

The Class P and the Class NP

- $P=\{L \mid L$ is accepted by a in polynomial time \}
- NP $=\{\mathrm{L} \mid \mathrm{L}$ is accepted by a Machine in polynomial time \}
- They are sets of languages

P vs NP?

- Are non-deterministic Turing machines really more powerful (efficient) than deterministic ones?
- Essence of P vs NP problem

Does Non-Determinism matter?

Finite Automata?
No!

DFA \approx NFA

Push Down Automata?
Yes!

P = NP?

- No one knows if this is true
- How can we make progress on this problem?

Progress

- $P=$ NP if every NP problem has a deterministic polynomial algorithm
- We could find an algorithm for every NP problem
- Seems... hard...
- We could use polynomial time reductions to find the "hardest" problems and just work on those

Reductions

- Real world examples:
- Finding your way around the city reduces to reading a map
- Traveling from Richmond to Cville reduces to driving a car
- Other suggestions?

Polynomial time reductions

- PARTITION $=\left\{n_{1}, n_{2}, \ldots n_{k} \mid\right.$ we can split the integers into two sets which sum to half $\}$
- SUBSET-SUM $=\left\{<n_{1}, n_{2}, \ldots n_{k}, m>\mid\right.$ there exists a subset which sums to $m\}$
- 1) If I can solve SUBSET-SUM, how can I use that to solve an instance of PARTITION?
- 2) If I can solve PARTITION, how can I use that to solve an instance of SUBSET-SUM?

Polynomial Reductions

- 1) Partition REDUCES to Subset-Sum
- Partition ${ }_{p}$ Subset-Sum
- 2) Subset-Sum REDUCES to Partition
- Subset-Sum <p Partition
- Therefore they are equivalently hard
- How long does the reduction take?
- How could you take advantage of an exponential time reduction?

NP-Completeness

- How would you define NP-Complete?
- They are the "hardest" problems in NP

Definition of NP-Complete

- Q is an NP-Complete problem if:
- 1) Q is in $N P$
- 2) every other NP problem polynomial time reducible to Q

Getting Started

- How do you show that EVERY NP problem reduces to Q?
- One way would be to already have an NP-Complete problem and just reduce from that

Reminder: Undecidability

- How do you show a language is undecidable?
- One way would be to already have an undecidable problem and just reduce from that

SAT

- SAT $=\{$ f | f is a Boolean Formula with a satisfying assignment \}
$\phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right)$
- Is SAT in NP?

Cook-Levin Theorem (1971)

- SAT is NP-Complete

If you want to see the proof it is Theorem 7.37 in Sipser (assigned reading!) or you can take CS 660 - Graduate Theory. You are not responsible for knowing the proof.

3-SAT

- 3-SAT $=\{f \mid f$ is in Conjunctive Normal Form, each clause has exactly 3 literals and f is satisfiable \}
- 3-SAT is NP-Complete
- (2-SAT is in P)

NP-Complete

- To prove a problem is NP-Complete show a polynomial time reduction from 3-SAT
- Other NP-Complete Problems:
- PARTITION
- SUBSET-SUM
- CLIQUE
- HAMILTONIAN PATH (TSP)
- GRAPH COLORING
- MINESWEEPER (and many more)

NP-Completeness Proof Method

- To show that Q is NP-Complete:
- 1) Show that Q is in NP
- 2) Pick an instance, R, of your favorite NP-Complete problem (ex: © in 3-SAT)
- 3) Show a polynomial algorithm to transform R into an instance of Q

Example: Clique

- CLIQUE $=\{<G, k>\mid G$ is a graph with a clique of size $k\}$
- A clique is a subset of vertices that are all connected
- Why is CLIQUE in NP?

Reduce 3-SAT to Clique

- Pick an instance of 3-SAT, Φ, with k clauses
- Make a vertex for each literal
- Connect each vertex to the literals in other clauses that are not the negation
- Any k-clique in this graph corresponds to a satisfying assignment
$\phi=\left(x_{1} \vee x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{2}\right)$

Example: Independent Set

- INDEPENDENT SET $=\{<\mathrm{G}, \mathrm{k}\rangle \mid$ where G has an independent set of size k \}
- An independent set is a set of vertices that have no edges
- How can we reduce this to clique?

Independent Set to CLIQUE

- This is the dual problem!

