

• NP-Completeness

• Travelling salesman problem

• P and NP

• You have to visit n cities

• You want to make the shortest trip

• How could you do this?

• What if you had a machine that could guess?

• Deterministic Polynomial Time: The TM takes at most

O(nc) steps to accept a string of length n

• Non-deterministic Polynomial Time: The TM takes at

most O(nc) steps on each computation path to accept a

string of length n

• P = { L | L is accepted by a deterministic Turing Machine

in polynomial time }

• NP = { L | L is accepted by a non-deterministic Turing

Machine in polynomial time }

• They are sets of languages

• Are non-deterministic Turing machines really more

powerful (efficient) than deterministic ones?

• Essence of P vs NP problem

DFA ≈ NFA
DFA not ≈ NFA

(PDA)

Finite Automata?

No!

Push Down Automata?

Yes!

• No one knows if this is true

• How can we make progress on this problem?

• P = NP if every NP problem has a deterministic
polynomial algorithm

• We could find an algorithm for every NP problem

• Seems… hard…

• We could use polynomial time reductions to find the
“hardest” problems and just work on those

• Real world examples:

• Finding your way around the city reduces to reading a map

• Traveling from Richmond to Cville reduces to driving a car

• Other suggestions?

• PARTITION = { n1,n2,… nk | we can split the integers into
two sets which sum to half }

• SUBSET-SUM = { <n1,n2,… nk,m> | there exists a subset
which sums to m }

• 1) If I can solve SUBSET-SUM, how can I use that to
solve an instance of PARTITION?

• 2) If I can solve PARTITION, how can I use that to solve
an instance of SUBSET-SUM?

• 1) Partition REDUCES to Subset-Sum

• Partition <p Subset-Sum

• 2) Subset-Sum REDUCES to Partition

• Subset-Sum <p Partition

• Therefore they are equivalently hard

• How long does the reduction take?

• How could you take advantage of an exponential time

reduction?

• How would you define NP-Complete?

• They are the “hardest” problems in NP

P

NP

NP-Complete

• Q is an NP-Complete problem if:

• 1) Q is in NP

• 2) every other NP problem polynomial time reducible to Q

• How do you show that EVERY NP problem reduces to

Q?

• One way would be to already have an NP-Complete

problem and just reduce from that

P1

P2

P3

P4

Mystery

NP-Complete

Problem

Q

• How do you show a language is undecidable?

• One way would be to already have an undecidable

problem and just reduce from that

L1

L2

L3

L4

Halting

Problem
Q

• SAT = { f | f is a Boolean Formula with a satisfying

assignment }

• Is SAT in NP?

• SAT is NP-Complete

If you want to see the proof it is Theorem 7.37

in Sipser (assigned reading!) or you can take

CS 660 – Graduate Theory. You are not

responsible for knowing the proof.

• 3-SAT = { f | f is in Conjunctive Normal Form, each

clause has exactly 3 literals and f is satisfiable }

• 3-SAT is NP-Complete

• (2-SAT is in P)

• To prove a problem is NP-Complete show a polynomial

time reduction from 3-SAT

• Other NP-Complete Problems:

• PARTITION

• SUBSET-SUM

• CLIQUE

• HAMILTONIAN PATH (TSP)

• GRAPH COLORING

• MINESWEEPER (and many more)

• To show that Q is NP-Complete:

• 1) Show that Q is in NP

• 2) Pick an instance, R, of your favorite NP-Complete
problem (ex: Φ in 3-SAT)

• 3) Show a polynomial algorithm to transform R into an

instance of Q

• CLIQUE = { <G,k> | G is a graph with a clique of size k }

• A clique is a subset of vertices that are all connected

• Why is CLIQUE in NP?

• Pick an instance of 3-SAT, Φ, with k clauses

• Make a vertex for each literal

• Connect each vertex to the literals in other clauses that

are not the negation

• Any k-clique in this graph corresponds to a satisfying
assignment

• INDEPENDENT SET = { <G,k> | where G has an

independent set of size k }

• An independent set is a set of vertices that have no

edges

• How can we reduce this to clique?

• This is the dual problem!

