


 

• NP-Completeness 

• Travelling salesman problem 

• P and NP 

 



• You have to visit n cities 

• You want to make the shortest trip 

 

• How could you do this? 

 

• What if you had a machine that could guess? 



• Deterministic Polynomial Time: The TM takes at most 

O(nc) steps to accept a string of length n 

• Non-deterministic Polynomial Time: The TM takes at 

most O(nc) steps on each computation path to accept a 

string of length n 



• P = { L | L is accepted by a deterministic Turing Machine 

in polynomial time } 

• NP = { L | L is accepted by a non-deterministic Turing 

Machine in polynomial time } 

 

• They are sets of languages 



• Are non-deterministic Turing machines really more 

powerful (efficient) than deterministic ones? 

• Essence of P vs NP problem 



DFA ≈ NFA 
DFA   not ≈   NFA 

(PDA) 

Finite Automata? 

No! 

Push Down Automata? 

Yes! 



• No one knows if this is true 

• How can we make progress on this problem? 



• P = NP if every NP problem has a deterministic 
polynomial algorithm 

• We could find an algorithm for every NP problem  

• Seems… hard… 

 

• We could use polynomial time reductions to find the 
“hardest” problems and just work on those 



• Real world examples: 

• Finding your way around the city reduces to reading a map 

• Traveling from Richmond to Cville reduces to driving a car 

• Other suggestions? 



• PARTITION = { n1,n2,… nk | we can split the integers into 
two sets which sum to half } 

• SUBSET-SUM = { <n1,n2,… nk,m> | there exists a subset 
which sums to m } 

 

• 1) If I can solve SUBSET-SUM, how can I use that to 
solve an instance of PARTITION? 

• 2) If I can solve PARTITION, how can I use that to solve 
an instance of SUBSET-SUM? 



• 1) Partition REDUCES to Subset-Sum 

• Partition <p Subset-Sum 

• 2) Subset-Sum REDUCES to Partition 

• Subset-Sum <p Partition 

• Therefore they are equivalently hard 



• How long does the reduction take? 

 

• How could you take advantage of an exponential time 

reduction? 



• How would you define NP-Complete? 

• They are the “hardest” problems in NP 

P 

NP 

NP-Complete 



• Q is an NP-Complete problem if: 

 

• 1) Q is in NP  

• 2) every other NP problem polynomial time reducible to Q  



• How do you show that EVERY NP problem reduces to 

Q? 

• One way would be to already have an NP-Complete 

problem and just reduce from that 

P1 

P2 

P3 

P4 

Mystery    

NP-Complete 

Problem 

Q 



• How do you show a language is undecidable? 

• One way would be to already have an undecidable 

problem and just reduce from that 

 

L1 

L2 

L3 

L4 

Halting 

Problem 
Q 



• SAT = { f | f is a Boolean Formula with a satisfying 

assignment } 

 

 

 

• Is SAT in NP? 



• SAT is NP-Complete 

If you want to see the proof it is Theorem 7.37 

in Sipser (assigned reading!) or you can take 

CS 660 – Graduate Theory. You are not 

responsible for knowing the proof. 



• 3-SAT = { f | f is in Conjunctive Normal Form,  each 

clause has exactly 3 literals and f is satisfiable }  

 

• 3-SAT is NP-Complete 

 

• (2-SAT is in P) 



• To prove a problem is NP-Complete show a polynomial 

time reduction from 3-SAT 

• Other NP-Complete Problems: 

• PARTITION 

• SUBSET-SUM 

• CLIQUE 

• HAMILTONIAN PATH (TSP) 

• GRAPH COLORING 

• MINESWEEPER (and many more) 



• To show that Q is NP-Complete: 

• 1) Show that Q is in NP 

• 2) Pick an instance, R, of your favorite NP-Complete 
problem (ex: Φ in 3-SAT) 

• 3) Show a polynomial algorithm to transform R into an 

instance of Q 



• CLIQUE = { <G,k> | G is a graph with a clique of size k } 

• A clique is a subset of vertices that are all connected 

• Why is CLIQUE  in NP? 



• Pick an instance of 3-SAT, Φ, with k clauses 

• Make a vertex for each literal 

• Connect each vertex to the literals in other clauses that 

are not the negation 

• Any k-clique in this graph corresponds to a satisfying 
assignment 



 



• INDEPENDENT SET = { <G,k> | where G has an 

independent set of size k } 

• An independent set is a set of vertices that have no 

edges 

• How can we reduce this to clique? 



• This is the dual problem!  


