

• Branch and Bound

• Job Scheduling

• Comparing with Greedy Approach

Branch and Bound Algorithm:

Scheduling Problem

Input of the problem:

 A number of tasks

 A number of resources

Output of the problem:

 A sequence of feeding the tasks to resources

to minimize the required processing time

Material by A.Mirhashemi

Application 1
Digital processing:
Each resource is a processor. All tasks need to pass trough
all processors in the fix sequence A,B,C but depending on
the task it takes different time for each processor to process
them. For example :

Processor A: Scanning
Processor B: Making a PDF
Processor C: Exporting a PDF

Task 1: A one page plain text document
Task 2: A 10 page document with pictures
Task 3: A 5 page html document.
Task 4: …

Production line:
Each product (task) need to pass trough all machines
(resources) in the production line but, the time depends on
what kind of customization the customer has ordered for
that production. For example:

Machine A: Solding
Machine B: Painting
Machine C: Packaging

Task 1: A black car with airbag
Task 2: A red car without airbag with CD player
Task 3: A white car with leather seats
Task 4: …

Application 2

Different tasks take different time
to be processed in each resource

7 6 7
5 5 2
6 4 1
3 4 3

Tasks can be done in any order

N! Possible different sequences

Start

1

2

3

4

4

3

3

2

4

4

2

4

2

3

3

2

2

1

3

4

4

3

3

1

4

4

1

4

1

3

3

1

Start

3

1

2

4

4

2

2

1

4

4

1

4

1

2

2

1

4

1

2

3

3

2

2

1

3

3

1

3

1

2

2

1

Decision tree (Brute force)

Greedy Algorithm

A possible greedy algorithm might start with selecting
the fastest tasks for processor A.

7 6 7

5 5 2

6 4 1

3 4 3

:

4

4

4

2 3 1

2

2

3

3

1

1

Greedy solution
T(4,2,3,1) = 34 7 6 7

5 5 2

6 4 1

3 4 3

4

4

4

1

1

1

2

2

2

3

3

3

7 6 7

5 5 2

6 4 1

3 4 3

Optimal solution
T(4,1,2,3) = 26

Branch and bound Algorithm

Define a bounding criteria for a minimum time
required by each branch of the decision tree

For level 1:

For level 2:

7 6 7

5 5 2

6 4 1

3 4 3

b(1)= 7+(6+5+4+4)+1=27
b(2)= 5+(6+5+4+4)+1=25
b(3)= 6+(6+5+4+4)+2=27
b(4)= 3+(6+5+4+4)+1=23

Level 1

Start

1 2 3 4

T ≥23 T ≥27 T ≥27 T ≥25 Bounds:

Minimum

This next

b(4,1)= (3+7)+(6+5+4)+1=26
b(4,2)= (3+5)+(6+5+4)+1=24
b(4,3)= (3+6)+(6+5+4)+2=26

7 6 7

5 5 2

6 4 1

3 4 3

Bounds:

Level 2

T ≥26 T ≥24 T ≥26

Minimum

This next

7 6 7

5 5 2

6 4 1

3 4 3

T(4,2,1,3) = 29
T(4,2,3,1) = 34

Tmin(4,2,x,x)= 29

Solve the branch 4-2-x-x

T ≥26 T ≥24 T ≥26 Bounds:

Actual:

7 6 7

5 5 2

6 4 1

3 4 3

Bounds: T ≥26 T ≥24 T ≥26

Tmin(4,3,x,x)= 29 Tmin(4,1,x,x)= 26

Tmin(4,2,x,x)= 29

Solve the branch 4-2-x-x

T(4,1,2,3) = 26
T(4,1,3,2) = 28

T(4,3,1,2) = 29
T(4,3,2,1) = 34

Actual: Actual:

7 6 7

5 5 2

6 4 1

3 4 3

Start

1 2 3 4

Actual Time: T = 26

Bounds: T ≥27 T ≥25 T ≥23 T ≥27

Must be
solved

Can be
skipped

Solve the other branches

b(2,1)= (5+7)+(6+4+4)+1=27
b(2,3)= (5+6)+(6+4+4)+3=28
b(2,4)= (5+3)+(6+4+4)+1=23

7 6 7

5 5 2

6 4 1

3 4 3

The only candidate that can outperform
T(4,1,2,3) is T(2,4,…) so we calculate it:

Actual T(2,4,1,3) = 29
Actual T(2,4,3,1) = 34

7 6 7

5 5 2

6 4 1

3 4 3

Start

1 2 3 4

Actual Time:

So the best time is T(4,1,2,3) and
we don’t need to solve the
problem for any other branch
because we now their minimum
time, already.

Bounds:

T = 26 T = 29

T ≥27 T ≥25 T ≥23 T ≥27

Bounds greater than 26!

• Using only the first level criteria we reduce
the problem by 50% (omitting 2 main
branches).

• Using the second level criteria we can reduce
even more.

Summary

