Course Name: Analysis and Design of Algorithms

Topics to be covered

- Hamiltonian Cycles

Hamiltonian Circuits Problem

- Hamiltonian circuit (tour) of a graph is a path that starts at a given vertex, visits each vertex in the graph exactly once, and ends at the starting vertex.

State Space Tree

- Put the starting vertex at level 0 in the tree
- At level 1, create a child node for the root node for each remaining vertex that is adjacent to the first vertex.
- At each node in level 2 , create a child node for each of the adjacent vertices that are not in the path from the root to this vertex, and so on.

Example

Backtracking Algorithms

How can a computer pla the game?

Remember Deep Blue?

The tic-tac-toe game

Backtracking Algorithms

The tic-tac-toe game

Backtracking Algori

3 missionaries and 2 cannibals want to cross the rive Condition:

1. A boat can take one or two (must include a miss
2. At any time, on either bank, the number of mi must not be less than the number of canniba

Backtracking Search

Essentially a simplified depth-first algorithm using recursion

Backtracking Search

(3 variables)

Backtracking Search

(3 variables)

Assignment $=\left\{\left(\mathrm{X}_{1}, \mathrm{v}_{11}\right)\right\}$

Backtracking Search

(3 variables)

Assignment $=\left\{\left(X_{1}, v_{11}\right),\left(X_{3}, v_{31}\right)\right\}$

Backtracking Search

(3 variables)

Assignment $=\left\{\left(X_{1}, v_{11}\right),\left(X_{3}, v_{31}\right)\right\}$

Backtracking Search

(3 variables)

Assignment $=\left\{\left(X_{1}, v_{11}\right),\left(X_{3}, V_{32}\right)\right\}$

Backtracking Search

(3 variables)

Assume again that no value of X_{2} leads to a valid assignment

Assignment $=\left\{\left(X_{1}, v_{11}\right),\left(X_{3}, v_{32}\right)\right\}$

Backtracking Search

(3 variables)

Assignment $=\left\{\left(X_{1}, v_{12}\right)\right\}$

Backtracking Search

(3 variables)

Assignment $=\left\{\left(X_{1}, v_{12}\right),\left(X_{2}, v_{21}\right)\right\}$

Backtracking Search

(3 variables)

Assignment $=\left\{\left(\mathrm{X}_{1}, \mathrm{~V}_{12}\right),\left(\mathrm{X}_{2}, \mathrm{~V}_{21}\right)\right\}$

Backtracking Search

(3 variables)

Assignment $=\left\{\left(X_{1}, v_{12}\right),\left(X_{2}, v_{21}\right),\left(X_{3}, v_{32}\right)\right\}$

Backtracking Search

(3 variables)

Assignment $=\left\{\left(X_{1}, v_{12}\right),\left(X_{2}, v_{21}\right),\left(X_{3}, v_{32}\right)\right\}$

Backtracking Search

(3 variables)

Assignment $=\left\{\left(X_{1}, v_{12}\right),\left(X_{2}, V_{21}\right)\right.$,

Backtracking Algorithm

[This recursive algorithm keeps too much data in memory. An iterative version could save memory (left as an exercise)]

CSP-BACKTRACKING($)$

1. If assignment is complete then return
2. $x \leftarrow$ select a variable not in
3. \leftarrow select an ordering on the domain of
4. For each value v in do
a. Add $(X \leftarrow v)$ to
b. If is valid then
i. result $\leftarrow C$ CSP-BACKTRACKING(A)

If resul $\dagger \neq$ failure then return resul \dagger
5. Return failure

Call CSP-BACKTRACKING(\{\})

Map Coloring

Chapter Summary

- Backtracking is an algorithm design technique for solving problems in which the number of choices grows at least exponentially with their instant size.
- This approach makes it possible to solve many large instances of NP-hard problems in an acceptable amount of time.
- The technique constructs a pruned state space tree.
- Backtracking constructs its state-space tree in the depth-first search fashion in the majority of its applications.

