

• Hamiltonian Cycles

• Hamiltonian circuit (tour) of a graph is a path that starts at

a given vertex, visits each vertex in the graph exactly

once, and ends at the starting vertex.

• Put the starting vertex at level 0 in the tree

• At level 1, create a child node for the root node for each

remaining vertex that is adjacent to the first vertex.

• At each node in level 2, create a child node for each of

the adjacent vertices that are not in the path from the root

to this vertex, and so on.

 18
 C F

 3 15 4 10

 12 5 19
 A B D H

 6 5 4
 22
 E G

 Backtracking Algorithms

The tic-tac-toe game

x x

How can a computer play

the game?

Remember Deep Blue?

Backtracking Algorithms

The tic-tac-toe game

x

x

0 1 2

0

1

2

(1,1)C

(0,0)H (0,1)H (0,2)H (1,0)H...

(0,0)C, (0,1)C, (1,0)C...

(0,1)H, (1,0)H, …, (2,2)H

(0,1)C, (1,0)C, (1,2)C, (2,0)C...
: Computer x : Human

Backtracking Algorithms

3 missionaries and 2 cannibals want to cross the river

Condition:

1. A boat can take one or two (must include a missionary)

2. At any time, on either bank, the number of missionaries

 must not be less than the number of cannibals.

Essentially a simplified depth-first
algorithm using recursion

Assignment = {}

Assignment = {(X1,v11)}

X1

v11

Assignment = {(X1,v11), (X3,v31)}

X1

v11

v31

X3

Assignment = {(X1,v11), (X3,v31)}

X1

v11

v31

X3

X2 Assume that no value of X2

leads to a valid assignment

Then, the search algorithm
backtracks to the previous
variable and tries another value

Assignment = {(X1,v11), (X3,v32)}

X1

v11

X3

v32 v31

X2

Assignment = {(X1,v11), (X3,v32)}

X1

v11

X3

v32

X2

Assume again that no value of
X2 leads to a valid assignment

The search algorithm
backtracks to the previous
variable (X3) and tries
another value. But assume
that X3 has only two
possible values. The
algorithm backtracks to X1 v31

X2

Assignment = {(X1,v12)}

X1

v11

X3

v32

X2

v31

X2

v12

Assignment = {(X1,v12), (X2,v21)}

X1

v11

X3

v32

X2

v31

X2

v12

v21

X2

Assignment = {(X1,v12), (X2,v21)}

X1

v11

X3

v32

X2

v31

X2

v12

v21

X2

The algorithm need not consider
the variables in the same order in
this sub-tree as in the other

Assignment = {(X1,v12), (X2,v21), (X3,v32)}

X1

v11

X3

v32

X2

v31

X2

v12

v21

X2

v32

X3

Assignment = {(X1,v12), (X2,v21), (X3,v32)}

X1

v11

X3

v32

X2

v31

X2

v12

v21

X2

v32

X3

The algorithm need
not consider the values
of X3 in the same order
in this sub-tree

Assignment = {(X1,v12), (X2,v21), (X3,v32)}

X1

v11

X3

v32

X2

v31

X2

v12

v21

X2

v32

X3

Since there are only
three variables, the
assignment is complete

CSP-BACKTRACKING(A)
1. If assignment A is complete then return A
2. X select a variable not in A
3. D select an ordering on the domain of X
4. For each value v in D do

a. Add (Xv) to A
b. If A is valid then

i. result CSP-BACKTRACKING(A)
ii. If result failure then return result

5. Return failure

Call CSP-BACKTRACKING({})

[This recursive algorithm keeps too much data in memory.
An iterative version could save memory (left as an exercise)]

{}

WA=red WA=green WA=blue

WA=red
NT=green

WA=red
NT=blue

WA=red
NT=green
Q=red

WA=red
NT=green
Q=blue

WA

NT

SA

Q

NSW
V

T

 Backtracking is an algorithm design technique
for solving problems in which the number of
choices grows at least exponentially with their
instant size.

 This approach makes it possible to solve many
large instances of NP-hard problems in an
acceptable amount of time.

 The technique constructs a pruned state space
tree.

 Backtracking constructs its state-space tree in
the depth-first search fashion in the majority of
its applications.

