


 

• 8 QUEENS PROBLEM USING BACK TRACKING 



Backtracking is a general algorithm for finding all (or 
some) solutions to some computational problem, that 
incrementally builds candidates to the solutions, and 
abandons each partial candidate ‘c’ ("backtracks") as 
soon as it determines that ‘c’ cannot possibly be 
completed to a valid solution.  

 

Backtracking is an important tool for solving 
constraint satisfaction problems, such as 
crosswords, verbal arithmetic, Sudoku, and many 
other puzzles. 

 

 

 



  It is also the basis of the so-called logic 
programming languages such as Planner and Prolog. 

  

The term "backtrack" was coined by American 
mathematician D. H. Lehmer in the 1950s. 
 

  The pioneer string-processing language SNOBOL 
(1962) may have been the first to provide a built-in 
general backtracking facility. 

 



The good example of the use of backtracking is the eight 
queens puzzle, that asks for all arrangements of eight 
queens on a standard chessboard so that no queen 
attacks any other. 

 

  In the common backtracking approach, the partial 
candidates are arrangements of k queens in the first k 
rows of the board, all in different rows and columns.  

 

Any partial solution that contains two mutually attacking 
queens can be abandoned, since it cannot possibly be 
completed to a valid solution 



The eight queens puzzle is the problem of placing 
eight chess queens on an 8×8 chessboard so that no 

two queens attack each other. 

Thus, a solution requires that no two queens share 
the same row, column, or diagonal. 

The eight queens puzzle is an example of the more 
general n-queens problem of placing n queens on 
an n×n chessboard, where solutions exist for all 

natural numbers n with the exception of  1, 2 and 3. 

The solution possibilities are discovered only up to 
23 queen. 



The puzzle was originally proposed in 1848 by the 
chess player Max Bezzel, and over the years, 
many mathematicians, including Gauss, have worked 
on this puzzle and its generalized n-queens problem.  

 



The first solution for 8 queens were provided by 
Franz Nauck in 1850. Nauck also extended the 
puzzle to n-queens problem (on an n×n board—a 
chessboard of arbitrary size).  

 

 In 1874, S. Günther proposed a method of finding 
solutions by using determinants, and J.W.L. 
Glaisher refined this approach. 

 

Edsger Dijkstra used this problem in 1972 to 
illustrate the power of what he called structured 
programming.  

 

He published a highly detailed description of the 
development of a depth-first backtracking algorithm. 





 Each recursive call attempts to place a queen in a 
specific      column. 

 
 For a given call, the state of the board from 
previous placements is known (i.e. where are the 
other queens?) 

 
 Current step backtracking: If a placement within 
the column does not lead to a solution, the queen is 
removed and moved "down" the column 

 
 Previous step backtracking: When all rows in a 
column have been tried, the call terminates and 
backtracks to the previous call (in the previous column) 

 



Pruning: If a queen cannot be placed into column i, 
do not even try to place one onto column i+1 – rather, 
 backtrack to column i-1 and move the queen that had 
been placed there. 
 
Using this approach we can reduce the number of 
potential solutions even more 























































1. Place the first queen in the left upper corner of the 
table. 

2. Save the attacked positions. 

3. Move to the next queen (which can only be placed to 
the next line). 

4. Search for a valid position. If there is one go to step 
8. 

5. There is not a valid position for the queen. Delete it 
(the x coordinate is 0). 

6. Move to the previous queen. 

7. Go to step 4. 

8. Place it to the first valid position. 

9. Save the attacked positions. 

10.If the queen processed is the last stop otherwise go 



putQueen(row) 

{ 

   for every position col on the same row 

          if position col is available 

                 place the next queen in position col 

          if (row<8) 

                 putQueen(row+1); 

          else  success; 

     remove the queen from position col 

} 



void putQueen(int row) 
  { 
      for (int col=0;col<squares;col++) 
 

     if (column[col]==available &&                 
leftDiagonal[row+col]==available && 

                 rightDiagonal[row-col]== available)  
                    { 
           positionInRow[row]=col; 
           column[col]=!available; 
            leftDiagonal[row+col]=!available; 



     rightDiagonal[row-col]=!available; 
          if (row< squares-1) 
             putQueen(row+1); 
          else 
             print(" solution found”); 
          column[col]=available; 
          leftDiagonal[row+col]=available; 
          rightDiagonal[row-col]= available; 
      } 
}  



• The eight queens puzzle has 92 distinct solutions.  

 

• If solutions that differ only by symmetry 
operations(rotations and reflections) of the board 
are counted as one the puzzle has 12 unique (or 
fundamental) solutions 





 

The following table gives the number of solutions 
for placing n queens on an n × n board, both unique 

and distinct for n=1–26. 

Note that the six queens puzzle has fewer solutions 
than the five queens puzzle. 

There is currently no known formula for the exact 
number of solutions. 

 



Order               

(“N”)         Total Solutions       Unique 

Solutions                      Exec time 

--------------------------------------------------------- 

1                        1                               1                               

 < 0 seconds 

2                        0                               0                               

 < 0 seconds 

3                        0                               0                               

 < 0 seconds 

4                        2                               1                               

 < 0 seconds  

5                       10                              2                              

 < 0 seconds 

6                        4                               1                               

 < 0 seconds 

7                       40                              6                              

 < 0 seconds 

8                       92                             12                             

 < 0 seconds 

9                      352                            46                            

 < 0 seconds 

10                     724                           92                           



15                2,279,184                 285,053             
 1.9 s 

16              14,772,512               1,846,955                       
11.2 s 

17              95,815,104              11,977,939                       
77.2 s 

18             666,090,624              83,263,591                        
9.6 m 

19            4,968,057,848            621,012,754       
 75.0 m 

20           39,029,188,884          4,878,666,808     
  10.2 h 

21         314,666,222,712         39,333,324,973     
 87.2 h 

22        2,691,008,701,644        336,376,244,042   
 31.9 

23       24,233,937,684,440      3,029,242,658,210    296 d 

24      227,514,171,973,736    
 28,439,272,956,934                 ? 



His algorithm for the N-Queen problem is 
considered as the fastest algorithm. He uses the 
concept of back tracking to solve this 

Previously the World’s fastest algorithm for the N-
Queen problem was given by Sylvain Pion and Joel-
Yann Fourre. 

His algorithm finds solutions up to 23 queens and 
uses bit field manipulation in BACKTRACKING. 

According to his program the maximum time taken 
to find all the solutions for a 18 queens problem is 
00:19:26 where as in the normal back tracking 
algorithm it was 00:75:00. 

 



For a 4x4 board, we could find the solutions like this: 
 
for(i0 = 0; i0 < 4; ++i0)  
{      if(isSafe(board, 0, i0))   

             {          board[0][i0] = true; 

   for(i1 = 0; i1 < 4; ++i1)  

                 {     if(isSafe(board, 1, i1)) 

                       {   board[1][i1] = true; 

           for(i2 = 0; i2 < 4; ++i2)  
           {     if(isSafe(board 2, i2))  

                                      {  board[2][i2] = 
true; 

       for(i3 = 0; i3 < 4; ++i3)  
                                         {     
if(isSafe(board 3, i3))  

                                        {  
board[3][i3] = true; 

        

  

  



 {  
 printBoard(board, 4);  
}  
  board[3][i3] = false; }   
  }  
   board[2][i2] = false;  }  
   }  
    board[1][i1] = false;  }  
    }  
     board[0][i0] = false; 
}  
     }  
 



     The nested loops are not so preferred because . 
It Does not scale to different sized boards 

 

     You must duplicate identical code (place and 
remove).  and error in one spot is hard to find 

 

      The problem with this is that it's not very 
programmer-friendly. We can't vary at runtime the 
size of the board we're searching 



The major advantage of the backtracking algorithm 
is the abillity to find and count all the possible 
solutions rather than just one while offering decent 
speed.  

 

 If we go through the algorithm for 8 queens 981 
queen moves (876 position tests plus 105 
backtracks) are required for the first solution alone. 
16,704 moves (14,852 tests and 1852 backtracks) 
are needed to find all 92 solutions.  

Given those figures, it's easy to see why the 
solution is best left to computers. 

 


