

• 8 QUEENS PROBLEM USING BACK TRACKING

Backtracking is a general algorithm for finding all (or
some) solutions to some computational problem, that
incrementally builds candidates to the solutions, and
abandons each partial candidate ‘c’ ("backtracks") as
soon as it determines that ‘c’ cannot possibly be
completed to a valid solution.

Backtracking is an important tool for solving
constraint satisfaction problems, such as
crosswords, verbal arithmetic, Sudoku, and many
other puzzles.

 It is also the basis of the so-called logic
programming languages such as Planner and Prolog.

The term "backtrack" was coined by American
mathematician D. H. Lehmer in the 1950s.

 The pioneer string-processing language SNOBOL
(1962) may have been the first to provide a built-in
general backtracking facility.

The good example of the use of backtracking is the eight
queens puzzle, that asks for all arrangements of eight
queens on a standard chessboard so that no queen
attacks any other.

 In the common backtracking approach, the partial
candidates are arrangements of k queens in the first k
rows of the board, all in different rows and columns.

Any partial solution that contains two mutually attacking
queens can be abandoned, since it cannot possibly be
completed to a valid solution

The eight queens puzzle is the problem of placing
eight chess queens on an 8×8 chessboard so that no

two queens attack each other.

Thus, a solution requires that no two queens share
the same row, column, or diagonal.

The eight queens puzzle is an example of the more
general n-queens problem of placing n queens on
an n×n chessboard, where solutions exist for all

natural numbers n with the exception of 1, 2 and 3.

The solution possibilities are discovered only up to
23 queen.

The puzzle was originally proposed in 1848 by the
chess player Max Bezzel, and over the years,
many mathematicians, including Gauss, have worked
on this puzzle and its generalized n-queens problem.

The first solution for 8 queens were provided by
Franz Nauck in 1850. Nauck also extended the
puzzle to n-queens problem (on an n×n board—a
chessboard of arbitrary size).

 In 1874, S. Günther proposed a method of finding
solutions by using determinants, and J.W.L.
Glaisher refined this approach.

Edsger Dijkstra used this problem in 1972 to
illustrate the power of what he called structured
programming.

He published a highly detailed description of the
development of a depth-first backtracking algorithm.

 Each recursive call attempts to place a queen in a
specific column.

 For a given call, the state of the board from
previous placements is known (i.e. where are the
other queens?)

 Current step backtracking: If a placement within
the column does not lead to a solution, the queen is
removed and moved "down" the column

 Previous step backtracking: When all rows in a
column have been tried, the call terminates and
backtracks to the previous call (in the previous column)

Pruning: If a queen cannot be placed into column i,
do not even try to place one onto column i+1 – rather,
 backtrack to column i-1 and move the queen that had
been placed there.

Using this approach we can reduce the number of
potential solutions even more

1. Place the first queen in the left upper corner of the
table.

2. Save the attacked positions.

3. Move to the next queen (which can only be placed to
the next line).

4. Search for a valid position. If there is one go to step
8.

5. There is not a valid position for the queen. Delete it
(the x coordinate is 0).

6. Move to the previous queen.

7. Go to step 4.

8. Place it to the first valid position.

9. Save the attacked positions.

10.If the queen processed is the last stop otherwise go

putQueen(row)

{

 for every position col on the same row

 if position col is available

 place the next queen in position col

 if (row<8)

 putQueen(row+1);

 else success;

 remove the queen from position col

}

void putQueen(int row)
 {
 for (int col=0;col<squares;col++)

 if (column[col]==available &&
leftDiagonal[row+col]==available &&

 rightDiagonal[row-col]== available)
 {
 positionInRow[row]=col;
 column[col]=!available;
 leftDiagonal[row+col]=!available;

 rightDiagonal[row-col]=!available;
 if (row< squares-1)
 putQueen(row+1);
 else
 print(" solution found”);
 column[col]=available;
 leftDiagonal[row+col]=available;
 rightDiagonal[row-col]= available;
 }
}

• The eight queens puzzle has 92 distinct solutions.

• If solutions that differ only by symmetry
operations(rotations and reflections) of the board
are counted as one the puzzle has 12 unique (or
fundamental) solutions

The following table gives the number of solutions
for placing n queens on an n × n board, both unique

and distinct for n=1–26.

Note that the six queens puzzle has fewer solutions
than the five queens puzzle.

There is currently no known formula for the exact
number of solutions.

Order

(“N”) Total Solutions Unique

Solutions Exec time

1 1 1

 < 0 seconds

2 0 0

 < 0 seconds

3 0 0

 < 0 seconds

4 2 1

 < 0 seconds

5 10 2

 < 0 seconds

6 4 1

 < 0 seconds

7 40 6

 < 0 seconds

8 92 12

 < 0 seconds

9 352 46

 < 0 seconds

10 724 92

15 2,279,184 285,053
 1.9 s

16 14,772,512 1,846,955
11.2 s

17 95,815,104 11,977,939
77.2 s

18 666,090,624 83,263,591
9.6 m

19 4,968,057,848 621,012,754
 75.0 m

20 39,029,188,884 4,878,666,808
 10.2 h

21 314,666,222,712 39,333,324,973
 87.2 h

22 2,691,008,701,644 336,376,244,042
 31.9

23 24,233,937,684,440 3,029,242,658,210 296 d

24 227,514,171,973,736
 28,439,272,956,934 ?

His algorithm for the N-Queen problem is
considered as the fastest algorithm. He uses the
concept of back tracking to solve this

Previously the World’s fastest algorithm for the N-
Queen problem was given by Sylvain Pion and Joel-
Yann Fourre.

His algorithm finds solutions up to 23 queens and
uses bit field manipulation in BACKTRACKING.

According to his program the maximum time taken
to find all the solutions for a 18 queens problem is
00:19:26 where as in the normal back tracking
algorithm it was 00:75:00.

For a 4x4 board, we could find the solutions like this:

for(i0 = 0; i0 < 4; ++i0)
{ if(isSafe(board, 0, i0))

 { board[0][i0] = true;

 for(i1 = 0; i1 < 4; ++i1)

 { if(isSafe(board, 1, i1))

 { board[1][i1] = true;

 for(i2 = 0; i2 < 4; ++i2)
 { if(isSafe(board 2, i2))

 { board[2][i2] =
true;

 for(i3 = 0; i3 < 4; ++i3)
 {
if(isSafe(board 3, i3))

 {
board[3][i3] = true;

 {
 printBoard(board, 4);
}
 board[3][i3] = false; }
 }
 board[2][i2] = false; }
 }
 board[1][i1] = false; }
 }
 board[0][i0] = false;
}
 }

 The nested loops are not so preferred because .
It Does not scale to different sized boards

 You must duplicate identical code (place and
remove). and error in one spot is hard to find

 The problem with this is that it's not very
programmer-friendly. We can't vary at runtime the
size of the board we're searching

The major advantage of the backtracking algorithm
is the abillity to find and count all the possible
solutions rather than just one while offering decent
speed.

 If we go through the algorithm for 8 queens 981
queen moves (876 position tests plus 105
backtracks) are required for the first solution alone.
16,704 moves (14,852 tests and 1852 backtracks)
are needed to find all 92 solutions.

Given those figures, it's easy to see why the
solution is best left to computers.

