Course Name: Analysis and Design of Algorithms

Topics to be covered

- What is Backtracking
- Sum of Subsets
- Graph Coloring
- Hamiltonian Circuits
- Other Problems

Algorithm Design

Algorithm Design ...

For a problem? What is an Optimal Solution?

- Minimum CPU time
- Minimum memory

Example: Given 4 numbers, sort it to nonincreasing order.
Method 1: Sequential comparison

1. Find the largest (3 comparisons)
2. Find the second largest (2 comparisons)
3. Find the third largest (1 comparisons)
4. Find the fourth largest

A total of 6 comparisons

Algorithm Design ...

For a problem? What is an Optimal Solution

- Minimum CPU time
- Minimum memory

Example: Given 4 numbers, sort it to nonincreasing order
Method 2: Somewhat clever method

(4 comp

Backtracking Problems

- Find your way through the well-known maze of hedges by Hampton Court Palace in England? Until you reached a dead end.
- 0-1 Knapsack problem - exponential time complexity.
- N-Queens problem.

Backtracking

- Suppose you have to make a series of decisions, among various choices, where
- You don't have enough information to know what to choose
- Each decision leads to a new set of choices
- Some sequence of choices (possibly more than one) may be a solution to your problem
- Backtracking is a methodical way of trying out various sequences of decisions, until you find one that "works"

Introduction

- Backtracking is used to solve problems in which a sequence of objects is chosen from a specified set so that the sequence satisfies some criterion.
- Backtracking is a modified depth-first search of a tree.
- Backtracking involves only a tree search.
- Backtracking is the procedure whereby, after determining that a node can lead to nothing but dead nodes, we go back ("backtrack") to the node's parent and proceed with the search on the next child.

Introduction ...

- We call a node nonpromising if when visiting the node we determine that it cannot possibly lead to a solution. Otherwise, we call it promising.
- In summary, backtracking consists of
- Doing a depth-first search of a state space tree,
- Checking whether each node is promising, and, if it is nonpromising, backtracking to the node's parent.
- This is called pruning the state space tree, and the subtree consisting of the visited nodes is called the pruned state space tree.

Solving a maze

- Given a maze, find a path from start to finish
- At each intersection, you have to decide between three or fewer choices:
- Go straight
- Go left
- Go right
- You don't have enough information to choose correctly
- Each choice leads to another set of choices
- One or more sequences of choices may (or may not) lead to a solution
- Many types of maze problem can be solved with backtracking

Coloring a map

- You wish to color a map with not more than four colors
- red, yellow, green, blue
- Adjacent countries must be in different colors
- You don't have enough information to choose colors
- Each choice leads to another set of choices
- One or more sequences of choices may (or may not) lead to a solution
- Many coloring problems can be solved with backtracking

Solving a puzzle

- In this puzzle, all holes but one are filled with white pegs
- You can jump over one peg with another
- Jumped pegs are removed
- The object is to remove all but the last peg
- You don't have enough information to jump ccircuuy
- Each choice leads to another set of choices
- One or more sequences of choices may (or may not) lead to a solution
- Many kinds of puzzle can be solved with backtracking

Backtracking (animation)

Terminology I

A tree is composed of nodes

There are three kinds of nodes:

The (one) root node
Internal nodes
O Leaf nodes
Backtracking can be thought of as searching a tree for a particular "goal" leaf node

Terminology II

- Each non-leaf node in a tree is a parent of one or more other nodes (its children)
- Each node in the tree, other than the root, has exactly one parent

children
Usually, however,
we draw our trees
downward, with
the root at the top

Real and virtual trees

- There is a type of data structure called a tree
- But we are not using it here
- If we diagram the sequence of choices we make, the diagram looks like a tree
- In fact, we did just this a couple of slides ago
- Our backtracking algorithm "sweeps out a tree" in "problem space"

The backtracking algorithm

- Backtracking is really quite simple--we "explore" each node, as follows:
- To "explore" node N:

1. If N is a goal node, return "success"
2. If N is a leaf node, return "failure"
3. For each child C of N ,
3.1. Explore C
3.1.1. If C was successful, return "success"
4. Return "failure"

Sum-of-Subsets problem

- Recall the thief and the 0-1 Knapsack problem.
- The goal is to maximize the total value of the stolen items while not making the total weight exceed W .
- If we sort the weights in nondecreasing order before doing the search, there is an obvious sign telling us that a node is nonpromising.

Sum-of-Subsets problem ...

- Let total be the total weight of the remaining weights, a node at the ith level is nonpromising if
weight + total > W

Example

- Say that our weight values are $5,3,2,4,1$
- W is 8
- We could have
- $5+3$
- $5+2+1$
- $4+3+1$
- We want to find a sequence of values that satisfies the criteria of adding up to W

Tree Space

- Visualize a tree in which the children of the root indicate whether or not value has been picked (left is picked, right is not picked)
- Sort the values in non-decreasing order so the lightest value left is next on list
- Weight is the sum of the weights that have been included at level i
- Let weight be the sum of the weights that have been included up to a node at level i . Then, a node at the ith level is nonpromising if
weight $+\mathrm{w}_{\mathrm{i}+1}>\mathrm{W}$

Sum-of-Subsets problem ...

- Example: Show the pruned state space tree when backtracking is used with $n=4, W=13$, and $w_{1}=3$, $w_{2}=4, w_{3}=5$, and $w_{4}=6$. Identify those nonpromising nodes.

Full example: Map coloring

- The Four Color Theorem states that any map on a plane can be colored with no more than four colors, so that no two countries with a common border are the same color
- For most maps, finding a legal coloring is easy
- For some maps, it can be fairly difficult to find a legal coloring
- We will develop a complete Java program to solve this problem

Data structures

- We need a data structure that is easy to work with, and supports:
- Setting a color for each country
- For each country, finding all adjacent countries
- We can do this with two arrays
- An array of "colors", where countryColor[i] is the color of the ith country
- A ragged array of adjacent countries, where map[i][j] is the $j^{\text {ih }}$ country adjacent to country i
- Example: map[5][3]==8 means the $3^{\text {th }}$ country adjacent to country 5 is country 8

Creating the map

void createMap() \{
map = new int[7][];
$\operatorname{map}[0]=$ new int[] $\{1,4,2,5\}$;
$\operatorname{map}[1]=$ new int[] $\{0,4,6,5\}$;
$\operatorname{map}[2]=$ new int[] $\{0,4,3,6,5\}$;
$\operatorname{map}[3]=$ new int[] $\{2,4,6\}$;
$\operatorname{map}[4]=$ new int[] $\{0,1,6,3,2\}$;
map[5] = new int[] $\{2,6,1,0\}$;
$\operatorname{map}[6]=$ new int[] $\{2,3,4,1,5\}$;

Setting the initial colors

static final int NONE $=0$;
static final int RED = 1;
static final int YELLOW $=2$;
static final int GREEN $=3$;
static final int BLUE = 4;
int mapColors[] = \{ NONE, NONE, NONE, NONE, NONE, NONE, NONE \};

The main program

(The name of the enclosing class is ColoredMap)
public static void main(String args[]) \{
ColoredMap m = new ColoredMap();
m.createMap();
boolean result = m.explore(0, RED);
System.out.println(result);
m.printMap();
\}

The backtracking method

```
boolean explore(int country, int color) {
    if (country >= map.length) return true;
    if (okToColor(country, color)) {
        mapColors[country] = color;
        for (int i = RED; i <= BLUE; i++) {
        if (explore(country + 1, i)) return true;
        }
    }
    return false;
}
```


Checking if a color can be used

boolean okToColor(int country, int color) \{
for (int i = 0; i < map[country].length; i++) \{ int ithAdjCountry = map[country][i]; if (mapColors[ithAdjCountry] == color) \{ return false;
\}
\}
return true;
\}

Printing the results

void printMap() \{

$$
\begin{aligned}
& \text { for (int } \mathrm{i}=0 ; \mathrm{i}<\text { mapColors.length; } \mathrm{i}++ \text {) \{ } \\
& \text { System.out.print("map[" }+\mathrm{i}+\text { "] is "); } \\
& \text { switch (mapColors[i]) \{ }
\end{aligned}
$$

case NONE: System.out.println("none"); break; case RED: System.out.printIn("red"); break; case YELLOW: System.out.printIn("yellow"); break; case GREEN: System.out.printIn("green"); break; case BLUE: System.out.printIn("blue"); break; \}

Recap

- We went through all the countries recursively, starting with country zero
- At each country we had to decide a color
- It had to be different from all adjacent countries
- If we could not find a legal color, we reported failure
- If we could find a color, we used it and recurred with the next country
- If we ran out of countries (colored them all), we reported success
- When we returned from the topmost call, we were done

