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• What is Backtracking 

• Sum of Subsets 

• Graph Coloring 

• Hamiltonian Circuits 

• Other Problems 
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Algorithm Design … 

For a problem? What is an Optimal Solution? 

• Minimum CPU time 

• Minimum memory 

Example: Given 4 numbers, sort it to nonincreasing order. 

Method 1: Sequential comparison 

1. Find the largest (3 comparisons) 

2. Find the second largest (2 comparisons) 

3. Find the third largest (1 comparisons) 

4. Find the fourth largest 

A total of 6 comparisons 
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Algorithm Design … 

For a problem? What is an Optimal Solution? 

• Minimum CPU time 

• Minimum memory 

Example: Given 4 numbers, sort it to nonincreasing order. 

Method 2: Somewhat clever method 

a1     a2      a3      a4 

a2 a4 

a4 

a2 a3 

a3 

a2 a3 

a2 

a1 a3 

a3 or a1 

(4 comparisons) 

(5 comparisons) 
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• Find your way through the well-known maze of 
hedges by Hampton Court Palace in England? Until 
you reached a dead end. 

 

• 0-1 Knapsack problem – exponential time complexity. 

 

• N-Queens problem. 
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• Suppose you have to make a series of decisions, 
among various choices, where 
• You don’t have enough information to know what to choose 

• Each decision leads to a new set of choices 

• Some sequence of choices (possibly more than one) may be a 
solution to your problem 

• Backtracking is a methodical way of trying out various 
sequences of decisions, until you find one that 
“works”  
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• Backtracking is used to solve problems in which a sequence 

of objects is chosen from a specified set so that the sequence 

satisfies some criterion. 

• Backtracking is a modified depth-first search of a tree. 

• Backtracking involves only a tree search. 

• Backtracking is the procedure whereby, after 

determining that a node can lead to nothing but dead 

nodes, we go back (“backtrack”) to the node’s parent 

and proceed with the search on the next child. 
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• We call a node nonpromising if when visiting the node we 
determine that it cannot possibly lead to a solution.  
Otherwise, we call it promising. 

• In summary, backtracking consists of 
• Doing a depth-first search of a state space tree, 

• Checking whether each node is promising, and, if it is 
nonpromising, backtracking to the node’s parent. 

• This is called pruning the state space tree, and the 
subtree consisting of the visited nodes is called the 
pruned state space tree. 

 



10 

• Given a maze, find a path from start to finish 

• At each intersection, you have to decide between three or fewer 
choices: 

• Go straight 

• Go left 

• Go right 

• You don’t have enough information to choose correctly 

• Each choice leads to another set of choices 

• One or more sequences of choices may (or may not) lead to a 
solution 

• Many types of maze problem can be solved with backtracking 
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• You wish to color a map with 
not more than four colors 
• red, yellow, green, blue 

• Adjacent countries must be in 
different colors 

• You don’t have enough information to choose colors 

• Each choice leads to another set of choices 

• One or more sequences of choices may (or may not) 
lead to a solution 

• Many coloring problems can be solved with 
backtracking 
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• In this puzzle, all holes but one are filled  

 with white pegs 

• You can jump over one peg with  

    another 

• Jumped pegs are removed 

• The object is to remove all but the last peg 

• You don’t have enough information to jump correctly 

• Each choice leads to another set of choices 

• One or more sequences of choices may (or may not) 
lead to a solution 

• Many kinds of puzzle can be solved with backtracking 
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start ? 
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dead end 

dead end 
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success! 
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There are three kinds of 

nodes: 

A tree is composed of nodes 

 

The (one) root node 

Internal nodes 

Leaf nodes 
Backtracking can be thought of 

as searching a tree for a 

particular “goal” leaf node 
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• Each non-leaf node in a tree is a parent of one or 

more other nodes (its children) 

• Each node in the tree, other than the root, has 

exactly one parent 

parent 

children 

parent 

children 

Usually, however, 

we draw our trees 

downward, with 

the root at the top 
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• There is a type of data structure called a tree 

• But we are not using it here 

• If we diagram the sequence of choices we make, the 

diagram looks like a tree 

• In fact, we did just this a couple of slides ago 

• Our backtracking algorithm “sweeps out a tree” in “problem space” 
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• Backtracking is really quite simple--we “explore” each 

node, as follows: 

• To “explore” node N: 

 1. If N is a goal node, return “success” 

 2. If N is a leaf node, return “failure” 

 3. For each child C of N, 

 3.1. Explore C 

 3.1.1. If C was successful, return “success” 

 4. Return “failure” 
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• Recall the thief and the 0-1 Knapsack problem. 

• The goal is to maximize the total value of the stolen 

items while not making the total weight exceed W. 

• If we sort the weights in nondecreasing order before 

doing the search, there is an obvious sign telling us that 

a node is nonpromising. 
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• Let total be the total weight of the remaining weights, a 

node at the ith level is nonpromising if 

    weight + total > W  
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• Say that our weight values are 5, 3, 2, 4, 1 

• W is 8 

• We could have 
• 5 + 3 

• 5 + 2 + 1 

• 4 + 3 + 1 

• We want to find a sequence of values that satisfies the 
criteria of adding up to W 
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• Visualize a tree in which the children of the root indicate 
whether or not value has been picked (left is picked, right 
is not picked) 

• Sort the values in non-decreasing order so the lightest 
value left is next on list 

• Weight is the sum of the weights that have been included 
at level i 

• Let weight be the sum of the weights that have been 
included up to a node at level i.  Then, a node at the ith 
level is nonpromising if 

    weight + wi+1 > W 
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• Example: Show the pruned state space tree when 

backtracking is used with n = 4, W = 13, and w1 = 3, 

w2 = 4, w3 = 5, and w4 = 6.  Identify those 

nonpromising nodes. 
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• The Four Color Theorem states that any map on a plane 

can be colored with no more than four colors, so that no 

two countries with a common border are the same color 

• For most maps, finding a legal coloring is easy 

• For some maps, it can be fairly difficult to find a legal 

coloring 

• We will develop a complete Java program to solve this 

problem 
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• We need a data structure that is easy to work with, 

and supports: 

• Setting a color for each country 

• For each country, finding all adjacent countries 

• We can do this with two arrays 

• An array of “colors”, where countryColor[i] is the color of the 

ith country 

• A ragged array of adjacent countries, where map[i][j] is the 

jth country adjacent to country i 

• Example: map[5][3]==8 means the 3th country adjacent to 

country 5 is country 8 
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void createMap() { 
    map = new int[7][]; 
    map[0] = new int[] { 1, 4, 2, 5 }; 
    map[1] = new int[] { 0, 4, 6, 5 };  
    map[2] = new int[] { 0, 4, 3, 6, 5 };  
    map[3] = new int[] { 2, 4, 6 };  
    map[4] = new int[] { 0, 1, 6, 3, 2 };  
    map[5] = new int[] { 2, 6, 1, 0 };  
    map[6] = new int[] { 2, 3, 4, 1, 5 }; 
} 
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static final int NONE = 0; 
static final int RED = 1; 
static final int YELLOW = 2; 
static final int GREEN = 3; 
static final int BLUE = 4; 
 
int mapColors[] = { NONE, NONE, NONE, NONE, 
                              NONE, NONE, NONE }; 
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 (The name of the enclosing class is ColoredMap) 
 

  public static void main(String args[]) { 

 ColoredMap m = new ColoredMap(); 

 m.createMap(); 

 boolean result = m.explore(0, RED); 

 System.out.println(result); 

 m.printMap(); 

 } 
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 boolean explore(int country, int color) { 

 if (country >= map.length) return true; 

 if (okToColor(country, color)) { 

 mapColors[country] = color; 

 for (int i = RED; i <= BLUE; i++) { 

 if (explore(country + 1, i)) return true; 

 } 

 } 

 return false; 

 } 
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 boolean okToColor(int country, int color) { 

 for (int i = 0; i < map[country].length; i++) { 

 int ithAdjCountry = map[country][i]; 

 if (mapColors[ithAdjCountry] == color) { 

 return false; 

 } 

 } 

 return true; 

 } 
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 void printMap() { 

       for (int i = 0; i < mapColors.length; i++) { 

           System.out.print("map[" + i + "] is "); 

           switch (mapColors[i]) { 

               case NONE:    System.out.println("none");   break; 

               case RED:       System.out.println("red");     break; 

               case YELLOW: System.out.println("yellow"); break; 

               case GREEN:   System.out.println("green");  break; 

               case BLUE:     System.out.println("blue");     break; 

           } 

      } 

} 
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• We went through all the countries recursively, starting 

with country zero 

• At each country we had to decide a color 

• It had to be different from all adjacent countries 

• If we could not find a legal color, we reported failure 

• If we could find a color, we used it and recurred with the next 

country 

• If we ran out of countries (colored them all), we reported success 

• When we returned from the topmost call, we were done 


