

2

• What is Backtracking

• Sum of Subsets

• Graph Coloring

• Hamiltonian Circuits

• Other Problems

3

Algorithm Design

Human

Problems
Result

Input Data

Structures Processing
Output Data

Structures

Computer

Algorithms

4

Algorithm Design …

For a problem? What is an Optimal Solution?

• Minimum CPU time

• Minimum memory

Example: Given 4 numbers, sort it to nonincreasing order.

Method 1: Sequential comparison

1. Find the largest (3 comparisons)

2. Find the second largest (2 comparisons)

3. Find the third largest (1 comparisons)

4. Find the fourth largest

A total of 6 comparisons

5

Algorithm Design …

For a problem? What is an Optimal Solution?

• Minimum CPU time

• Minimum memory

Example: Given 4 numbers, sort it to nonincreasing order.

Method 2: Somewhat clever method

a1 a2 a3 a4

a2 a4

a4

a2 a3

a3

a2 a3

a2

a1 a3

a3 or a1

(4 comparisons)

(5 comparisons)

6

• Find your way through the well-known maze of
hedges by Hampton Court Palace in England? Until
you reached a dead end.

• 0-1 Knapsack problem – exponential time complexity.

• N-Queens problem.

7

• Suppose you have to make a series of decisions,
among various choices, where
• You don’t have enough information to know what to choose

• Each decision leads to a new set of choices

• Some sequence of choices (possibly more than one) may be a
solution to your problem

• Backtracking is a methodical way of trying out various
sequences of decisions, until you find one that
“works”

8

• Backtracking is used to solve problems in which a sequence

of objects is chosen from a specified set so that the sequence

satisfies some criterion.

• Backtracking is a modified depth-first search of a tree.

• Backtracking involves only a tree search.

• Backtracking is the procedure whereby, after

determining that a node can lead to nothing but dead

nodes, we go back (“backtrack”) to the node’s parent

and proceed with the search on the next child.

9

• We call a node nonpromising if when visiting the node we
determine that it cannot possibly lead to a solution.
Otherwise, we call it promising.

• In summary, backtracking consists of
• Doing a depth-first search of a state space tree,

• Checking whether each node is promising, and, if it is
nonpromising, backtracking to the node’s parent.

• This is called pruning the state space tree, and the
subtree consisting of the visited nodes is called the
pruned state space tree.

10

• Given a maze, find a path from start to finish

• At each intersection, you have to decide between three or fewer
choices:

• Go straight

• Go left

• Go right

• You don’t have enough information to choose correctly

• Each choice leads to another set of choices

• One or more sequences of choices may (or may not) lead to a
solution

• Many types of maze problem can be solved with backtracking

11

• You wish to color a map with
not more than four colors
• red, yellow, green, blue

• Adjacent countries must be in
different colors

• You don’t have enough information to choose colors

• Each choice leads to another set of choices

• One or more sequences of choices may (or may not)
lead to a solution

• Many coloring problems can be solved with
backtracking

12

• In this puzzle, all holes but one are filled

 with white pegs

• You can jump over one peg with

 another

• Jumped pegs are removed

• The object is to remove all but the last peg

• You don’t have enough information to jump correctly

• Each choice leads to another set of choices

• One or more sequences of choices may (or may not)
lead to a solution

• Many kinds of puzzle can be solved with backtracking

13

start ?

?

dead end

dead end

?
?

dead end

dead end

?

success!

dead end

14

There are three kinds of

nodes:

A tree is composed of nodes

The (one) root node

Internal nodes

Leaf nodes
Backtracking can be thought of

as searching a tree for a

particular “goal” leaf node

15

• Each non-leaf node in a tree is a parent of one or

more other nodes (its children)

• Each node in the tree, other than the root, has

exactly one parent

parent

children

parent

children

Usually, however,

we draw our trees

downward, with

the root at the top

16

• There is a type of data structure called a tree

• But we are not using it here

• If we diagram the sequence of choices we make, the

diagram looks like a tree

• In fact, we did just this a couple of slides ago

• Our backtracking algorithm “sweeps out a tree” in “problem space”

17

• Backtracking is really quite simple--we “explore” each

node, as follows:

• To “explore” node N:

 1. If N is a goal node, return “success”

 2. If N is a leaf node, return “failure”

 3. For each child C of N,

 3.1. Explore C

 3.1.1. If C was successful, return “success”

 4. Return “failure”

18

• Recall the thief and the 0-1 Knapsack problem.

• The goal is to maximize the total value of the stolen

items while not making the total weight exceed W.

• If we sort the weights in nondecreasing order before

doing the search, there is an obvious sign telling us that

a node is nonpromising.

19

• Let total be the total weight of the remaining weights, a

node at the ith level is nonpromising if

 weight + total > W

20

• Say that our weight values are 5, 3, 2, 4, 1

• W is 8

• We could have
• 5 + 3

• 5 + 2 + 1

• 4 + 3 + 1

• We want to find a sequence of values that satisfies the
criteria of adding up to W

21

• Visualize a tree in which the children of the root indicate
whether or not value has been picked (left is picked, right
is not picked)

• Sort the values in non-decreasing order so the lightest
value left is next on list

• Weight is the sum of the weights that have been included
at level i

• Let weight be the sum of the weights that have been
included up to a node at level i. Then, a node at the ith
level is nonpromising if

 weight + wi+1 > W

22

• Example: Show the pruned state space tree when

backtracking is used with n = 4, W = 13, and w1 = 3,

w2 = 4, w3 = 5, and w4 = 6. Identify those

nonpromising nodes.

23

• The Four Color Theorem states that any map on a plane

can be colored with no more than four colors, so that no

two countries with a common border are the same color

• For most maps, finding a legal coloring is easy

• For some maps, it can be fairly difficult to find a legal

coloring

• We will develop a complete Java program to solve this

problem

24

• We need a data structure that is easy to work with,

and supports:

• Setting a color for each country

• For each country, finding all adjacent countries

• We can do this with two arrays

• An array of “colors”, where countryColor[i] is the color of the

ith country

• A ragged array of adjacent countries, where map[i][j] is the

jth country adjacent to country i

• Example: map[5][3]==8 means the 3th country adjacent to

country 5 is country 8

25

0 1

4
2 3

6
5 int map[][];

void createMap() {
 map = new int[7][];
 map[0] = new int[] { 1, 4, 2, 5 };
 map[1] = new int[] { 0, 4, 6, 5 };
 map[2] = new int[] { 0, 4, 3, 6, 5 };
 map[3] = new int[] { 2, 4, 6 };
 map[4] = new int[] { 0, 1, 6, 3, 2 };
 map[5] = new int[] { 2, 6, 1, 0 };
 map[6] = new int[] { 2, 3, 4, 1, 5 };
}

26

static final int NONE = 0;
static final int RED = 1;
static final int YELLOW = 2;
static final int GREEN = 3;
static final int BLUE = 4;

int mapColors[] = { NONE, NONE, NONE, NONE,
 NONE, NONE, NONE };

27

 (The name of the enclosing class is ColoredMap)

 public static void main(String args[]) {

 ColoredMap m = new ColoredMap();

 m.createMap();

 boolean result = m.explore(0, RED);

 System.out.println(result);

 m.printMap();

 }

28

 boolean explore(int country, int color) {

 if (country >= map.length) return true;

 if (okToColor(country, color)) {

 mapColors[country] = color;

 for (int i = RED; i <= BLUE; i++) {

 if (explore(country + 1, i)) return true;

 }

 }

 return false;

 }

29

 boolean okToColor(int country, int color) {

 for (int i = 0; i < map[country].length; i++) {

 int ithAdjCountry = map[country][i];

 if (mapColors[ithAdjCountry] == color) {

 return false;

 }

 }

 return true;

 }

30

 void printMap() {

 for (int i = 0; i < mapColors.length; i++) {

 System.out.print("map[" + i + "] is ");

 switch (mapColors[i]) {

 case NONE: System.out.println("none"); break;

 case RED: System.out.println("red"); break;

 case YELLOW: System.out.println("yellow"); break;

 case GREEN: System.out.println("green"); break;

 case BLUE: System.out.println("blue"); break;

 }

 }

}

31

• We went through all the countries recursively, starting

with country zero

• At each country we had to decide a color

• It had to be different from all adjacent countries

• If we could not find a legal color, we reported failure

• If we could find a color, we used it and recurred with the next

country

• If we ran out of countries (colored them all), we reported success

• When we returned from the topmost call, we were done

