Course Name: Analysis and Design of Algorithms

Topics to be covered

- Greedy Method
- General Method
- Minimum Spanning Tree
- Kruskal's Algorithm

Overview of Greedy Method

- Like dynamic programming, used to solve optimization problems.
- Problems exhibit optimal substructure (like DP).
- Problems also exhibit the property.
- When we have a choice to make, make the one that looks best right now.
- Make a locally optimal choice in hope of getting a globally

Greedy Strategy

- Prove that when there is a choice to make, one of the optimal choices is the greedy choice. Therefore, it's always safe to make the greedy choice.
- Show that all but one of the subproblems resulting from the greedy choice are empty.

Activity-selection Problem

Set S of n activities, $a_{1}, a_{2}, \ldots, a_{n}$.

- $s_{i}=$ start time of activity i.
- $f_{\mathrm{i}}=$ finish time of activity i.
- Output: Subset A of maximum number of compatible activities.
- Two activities are compatible, if their intervals don't overlap.

Example:

Optimal Substructure

- Assume activities are sorted by finishing times.
- Suppose an optimal solution includes activity a_{k}.
- This generates two subproblems.
- Selecting from a_{1}, \ldots, a_{k-1}, activities compatible with one another, and that finish before a_{k} starts (compatible with a_{k}).
- Selecting from a_{k+1}, \ldots, a_{n}, activities compatible with one another, and that start after a_{k} finishes.
- The solutions to the two subproblems must be optimal.
- Prove using the cut-and-paste approach.

Recursive Solution

- Let $S_{i \mathrm{ij}}=$ subset of activities in S that start after a_{i} finishes and finish before a_{j} starts.
- Subproblems Selecting maximum number of mutually compatible activities from S_{ij}.
- Let $c[i, j]=$ size of maximum-size subset of mutually compatible activities in S_{ij}.

$$
\begin{aligned}
& \text { Recursive } c[i, j]=\left\{\begin{array}{cl}
0 & \text { if } S_{i j}=\phi \\
\text { Solution: }
\end{array} \quad \begin{array}{cl}
0 & \text { if } S_{i j} \neq \phi
\end{array}, \begin{array}{c}
\\
\max \{c[i, k]+c[k, j]+1\} \\
i<k<j
\end{array}\right.
\end{aligned}
$$

Greedy-choice Property

- The problem also exhibits the
- There is an optimal solution to the subproblem S_{ij}, that includes the activity with the smallest finish time in set $S_{i j}$.
- Can be proved easily.
- Hence, there is an optimal solution to S that includes a_{1}.
- Therefore, make this greedy cho without solving subproblems first and evaluating them.
- Solve the subproblem that ensues as a result of making this greedy choice.
- Combine the greedy choice and the solution to the subproblem.

Recursive Algorithm

Recursive-Activity-Selector ($s, f, i, i)$

1. $m \leftarrow i+1$
2. while $m<j$ and $s_{\mathrm{m}}<f_{\mathrm{i}}$
3. \quad do $m \leftarrow m+1$
4. if $m<j$
5. then return $\left\{a_{m}\right\} \cup$ Recursive-Activity-Selector(s, f, m,)
6. else return ϕ

Recursive-Activity-Selector (s, f, 0, n+1)

$\Theta(\mathrm{n})$
Straightforward to convert the algorithm to an iterative one. See the text.

Typical Steps

- Cast the optimization problem as one in which we make a choice and are left with one subproblem to solve.

The greedy choice, so that the greedy choice is always safe.

- Show that greedy choice and optimal solution to subproblem \Rightarrow optimal solution to the problem.
- Make the greedy choice and
- May have to
- Example: Sorting activities by finish time.

Elements of Greedy Algorithms

- Greedy-choice Property.
- A globally optimal solution can be arrived at by making a locally optimal (greedy) choice.
- Optimal Substructure.

Minimum Spanning Trees

Definitions and Representation

- An undirected graph G is a pair (V, E), where V is a finite set of points called vertices and E is a finite set of edges.
- An edge $e \in E$ is an unordered pair (u, v), where $u, v \in V$.
- In a directed graph, the edge e is an ordered pair (u, v). An edge (u, v) is incident from vertex u and is incident to vertex v.
- A path from a vertex v to a vertex u is a sequence $\left\langle v_{0}, v_{1}, v_{2}, \ldots, v_{k}\right\rangle$ of vertices where $v_{0}=v, v_{k}=u$, and (v_{i}, $\left.v_{i+1}\right) \in E$ for $I=0,1, \ldots, k-1$.
- The length of a path is defined as the number of edges in the path.

Definitions and Representation

a) An undirected graph and (b) a directed graph.

Definitions and Representation

- An undirected graph is connected if every pair of vertices is connected by a path.
- A forest is an acyclic graph, and a tree is a connected acyclic graph.
- A graph that has weights associated with each edge is called a weighted graph.

Definitions and Representation

- Graphs can be represented by their adjacency matrix or an edge (or vertex) list.
- Adjacency matrices have a value $a_{i j}=1$ if nodes i and j share an edge; 0 otherwise. In case of a weighted graph, $a_{i, j}=w_{i, j}$ the weight of the edge.
- The adjacency list representation of a graph $G=(V, E)$ consists of an array Adj[1../V/] of lists. Each list Adj[V] is a list of all vertices adjacent to v.
- For a grapn with n nodes, adjacency matrices take $\theta\left(n^{2}\right)$ space and adjacency list takes $\Theta(/ E /)$ space.

Definitions and Representation

An undirected graph and its adjacency matrix representation.

An undirected graph and its adjacency list representation.

Minimum Spanning Tree

- A spanning tree of an undirected graph G is a subgraph of G that is a tree containing all the vertices of G.
- In a weighted graph, the weight of a subgraph is the sum of the weights of the edges in the subgraph.
- A minimum spanning tree (MST) for a weighted undirected graph is a spanning tree with minimum weight.

Minimum Spanning Tree

An undirected graph and its minimum spanning tree.

Kruskal's Algorithm

- Starts with each vertex in its own component.
- Repeatedly merges two components into one by choosing a light edge that connects them (i.e., a light edge crossing the cut between them).
- Scans the set of edges in monotonically increasing order by weight.
- Uses a disjoint-set data structure to determine whether an edge connects vertices in different components.

