


 

• Greedy Method 

• General Method 

• Minimum Spanning Tree 

• Kruskal’s Algorithm 
 



• Like dynamic programming, used to solve optimization 

problems. 

• Problems exhibit optimal substructure (like DP). 

• Problems also exhibit the greedy-choice property. 

• When we have a choice to make, make the one that looks best 

right now. 

• Make a locally optimal choice in hope of getting a globally 

optimal solution. 

 

 



• The choice that seems best at the moment is the one we 

go with. 

• Prove that when there is a choice to make, one of the optimal 

choices is the greedy choice. Therefore, it’s always safe to make 

the greedy choice. 

• Show that all but one of the subproblems resulting from the greedy 

choice are empty. 



• Input: Set S of n activities, a1, a2, …, an. 

• si = start time of activity i. 

• fi = finish time of activity i. 

• Output: Subset A of maximum number of compatible 

activities. 

• Two activities are compatible, if their intervals don’t overlap. 

 

Example: Activities in each line 

are compatible. 



• Assume activities are sorted by finishing times. 

• f1  f2  …  fn. 

• Suppose an optimal solution includes activity ak. 

• This generates two subproblems. 

• Selecting from a1, …, ak-1, activities compatible with one another, and 

that finish before ak starts (compatible with ak). 

• Selecting from ak+1, …, an, activities compatible with one another, and 

that start after ak finishes. 

• The solutions to the two subproblems must be optimal. 

• Prove using the cut-and-paste approach. 

 



• Let Sij = subset of activities in S that start after ai finishes 

and finish before aj starts. 

• Subproblems: Selecting maximum number of mutually 

compatible activities from Sij. 

• Let c[i, j] = size of maximum-size subset of mutually 

compatible activities in Sij. 

 



















ij
jki

ij

Sjkckic

S
jic  if}1],[],[max{

 if0
],[

Recursive  

Solution: 



• The problem also exhibits the greedy-choice property. 
• There is an optimal solution to the subproblem Sij, that includes 

the activity with the smallest finish time in set Sij. 

• Can be proved easily. 

• Hence, there is an optimal solution to S that includes a1. 

• Therefore, make this greedy choice without solving 
subproblems first and evaluating them. 

• Solve the subproblem that ensues as a result of making 
this greedy choice. 

• Combine the greedy choice and the solution to the 
subproblem. 



Recursive-Activity-Selector (s, f, i, j) 

1. m  i+1 

2. while m < j and sm < fi 
3.     do m  m+1 

4. if  m < j 

5.     then return {am}   

                    Recursive-Activity-Selector(s, f, m, j) 

6.     else return  

Initial Call: Recursive-Activity-Selector (s, f, 0, n+1) 

Complexity: (n) 

Straightforward to convert the algorithm to an iterative one. 

See the text. 



• Cast the optimization problem as one in which we make 
a choice and are left with one subproblem to solve. 

• Prove that there’s always an optimal solution that makes 
the greedy choice, so that the greedy choice is always 
safe. 

• Show that greedy choice and optimal solution to 
subproblem  optimal solution to the problem. 

• Make the greedy choice and solve top-down. 

• May have to preprocess input to put it into greedy order. 
• Example: Sorting activities by finish time. 

 



• Greedy-choice Property. 

• A globally optimal solution can be arrived at by making a locally 

optimal (greedy) choice. 

• Optimal Substructure. 





• An undirected graph G is a pair (V,E), where V is a finite 

set of points called vertices and E is a finite set of edges.  

• An edge e ∈ E is an unordered pair (u,v), where u,v ∈ V.  

• In a directed graph, the edge e is an ordered pair (u,v). 

An edge (u,v) is incident from vertex u and is incident to 

vertex v.  

• A path from a vertex v to a vertex u is a sequence 

<v0,v1,v2,…,vk> of vertices where v0 = v, vk = u, and (vi, 

vi+1) ∈ E for I = 0, 1,…, k-1.  

• The length of a path is defined as the number of edges in 

the path.  



a) An undirected graph and (b) a directed graph. 



• An undirected graph is connected if every pair of vertices 

is connected by a path.  

• A forest is an acyclic graph, and a tree is a connected 

acyclic graph.  

• A graph that has weights associated with each edge is 

called a weighted graph.  



• Graphs can be represented by their adjacency matrix or 

an edge (or vertex) list.  

• Adjacency matrices have a value ai,j = 1 if nodes i and j 

share an edge; 0 otherwise. In case of a weighted graph, 

ai,j = wi,j, the weight of the edge.  

• The adjacency list representation of a graph G = (V,E) 

consists of an array Adj[1..|V|] of lists. Each list Adj[v] is a 

list of all vertices adjacent to v.  

• For a grapn with n nodes, adjacency matrices take Θ(n2) 

space and adjacency list takes Θ(|E|) space.  



An undirected graph and its adjacency matrix representation. 

An undirected graph and its adjacency list representation.  



• A spanning tree of an undirected graph G is a subgraph 

of G that is a tree containing all the vertices of G.  

• In a weighted graph, the weight of a subgraph is the sum 

of the weights of the edges in the subgraph.  

• A minimum spanning tree (MST) for a weighted 

undirected graph is a spanning tree with minimum 

weight.  



An undirected graph and its minimum spanning tree. 



• Starts with each vertex in its own component. 

• Repeatedly merges two components into one by 

choosing a light edge that connects them (i.e., a light 

edge crossing the cut between them). 

• Scans the set of edges in monotonically increasing order 

by weight. 

• Uses a disjoint-set data structure to determine whether 

an edge connects vertices in different components. 

 


