


 

• Dynamic Programming 

•0/1 Knapsack Problem 



• Consider the problem of finding a shortest path between 
a pair of vertices in an acyclic graph.  

• An edge connecting node i to node j has cost c(i,j). 

• The graph contains n nodes numbered 0,1,…, n-1, and 
has an edge from node i   to node j only if i < j. Node 0 is 
source and node n-1 is the destination. 

• Let f(x) be the cost of the shortest path from node 0 to 
node x. 

 



• A graph for which the shortest path between nodes 0 and 

4 is to be computed. 



• The solution to a DP problem is typically expressed as a 
minimum (or maximum) of possible alternate solutions.  

• If r represents the cost of a solution composed of 
subproblems x1, x2,…, xl, then r can be written as 

 

 

 Here, g is the composition function. 

• If the optimal solution to each problem is determined by 
composing optimal solutions to the subproblems and 
selecting the minimum (or maximum), the formulation is 
said to be a DP formulation. 



The computation and composition of subproblem solutions 
to solve problem f(x8). 



• The recursive DP equation is also called the functional 
equation or optimization equation. 

• In the equation for the shortest path problem the 
composition function is f(j) + c(j,x). This contains a single 
recursive term (f(j)). Such a formulation is called 
monadic. 

• If the RHS has multiple recursive terms, the DP 
formulation is called polyadic. 



• The dependencies between subproblems can be 
expressed as a graph. 

• If the graph can be levelized (i.e., solutions to problems 
at a level depend only on solutions to problems at the 
previous level), the formulation is called serial, else it is 
called non-serial. 

• Based on these two criteria, we can classify DP 
formulations into four categories - serial-monadic, serial-
polyadic, non-serial-monadic, non-serial-polyadic. 

• This classification is useful since it identifies concurrency 
and dependencies that guide parallel formulations. 



• We are given a knapsack of capacity c and a set of n objects 
numbered 1,2,…,n. Each object i has weight wi and profit pi. 

• Let v = [v1, v2,…, vn] be a solution vector in which vi = 0 if object i is 
not in the knapsack, and vi = 1 if it is in the knapsack. 

• The goal is to find a subset of objects to put into the knapsack so that  

 

 

 

 (that is, the objects fit into the knapsack) and 

 

 

 

 

 is maximized (that is, the profit is maximized).  



• The naive method is to consider all 2n possible subsets of 

the n objects and choose the one that fits into the 

knapsack and maximizes the profit.  

• Let F[i,x] be the maximum profit for a knapsack of 

capacity x using only objects {1,2,…,i}. The DP 

formulation is:  



• Construct a table F of size n x c in row-major order. 

• Filling an entry in a row requires two entries from the 

previous row: one from the same column and one from 

the column offset by the weight of the object 

corresponding to the row.  

• Computing each entry takes constant time; the sequential 
run time of this algorithm is Θ(nc). 

• The formulation is serial-monadic. 



Computing entries of table F for the 0/1 knapsack problem. The computation of 
entry F[i,j] requires communication with processing elements containing 

entries F[i-1,j] and F[i-1,j-wi]. 



• Using c processors in a PRAM, we can derive a simple 
parallel algorithm that runs in O(n) time by partitioning the 
columns across processors.  

• In a distributed memory machine, in the jth iteration, for 
computing F[j,r] at processing element Pr-1, F[j-1,r] is 
available locally but F[j-1,r-wj] must be fetched.  

• The communication operation is a circular shift and the 
time is given by (ts + tw) log c. The total time is therefore tc 
+ (ts + tw) log c. 

• Across all n iterations (rows), the parallel time is O(n log 
c). Note that this is not cost optimal. 


