Course Name: Analysis and Design of Algorithms

Topics to be covered

- Dynamic Programming
-0/1 Knapsack Problem

Dynamic Programming: Example

- Consider the problem of finding a shortest path between a pair of vertices in an acyclic graph.
- An edge connecting node i to node j has cost $c(i, j)$.
- The graph contains n nodes numbered $0,1, \ldots, n-1$, and has an edge from node i to node j only if $i<j$. Node 0 is source and node $n-1$ is the destination.
- Let $f(x)$ be the cost of the shortest path from node 0 to node x.

$$
f(x)= \begin{cases}0 & x=0 \\ \min _{0 \leq j<x}\{f(j)+c(j, x)\} & 1 \leq x \leq n-1\end{cases}
$$

Dynamic Programming: Example

- A graph for which the shortest path between nodes 0 and 4 is to be computed.

$$
f(4)=\min \{f(3)+c(3,4), f(2)+c(2,4)\} .
$$

Dynamic Programming

- The solution to a DP problem is typically expressed as a minimum (or maximum) of possible alternate solutions.
- If r represents the cost of a solution composed of subproblems $x_{1}, x_{2}, \ldots, x_{1}$, then r can be written as

$$
r=g\left(f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{l}\right)\right) .
$$

Here, g is the composition function.

- If the optimal solution to each problem is determined by composing optimal solutions to the subproblems and selecting the minimum (or maximum), the formulation is said to be a DP formulation.

Dynamic Programming: Example

Composition of solutions into a term

Minimization of terms
The computation and composition of subproblem solutions to solve problem $f\left(x_{8}\right)$.

Dynamic Programming

- The recursive DP equation is also called the functional equation or optimization equation.
- In the equation for the shortest path problem the composition function is $f(j)+c(j, x)$. This contains a single recursive term $(f(j))$. Such a formulation is called monadic.
- If the RHS has multiple recursive terms, the DP formulation is called polyadic.

Dynamic Programming

- The dependencies between subproblems can be expressed as a graph.
- If the graph can be levelized (i.e., solutions to problems at a level depend only on solutions to problems at the previous level), the formulation is called serial, else it is called non-serial.
- Based on these two criteria, we can classify DP formulations into four categories - serial-monadic, serialpolyadic, non-serial-monadic, non-serial-polyadic.
- This classification is useful since it identifies concurrency and dependencies that guide parallel formulations.

0/1 Knapsack Problem

- We are given a knapsack of capacity c and a set of n objects numbered $1,2, \ldots, n$. Each object i has weight w_{i} and profit p_{i}.
- Let $v=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ be a solution vector in which $v_{i}=0$ if object i is not in the knapsack, and $v_{i}=1$ if it is in the knapsack.
- The goal is to find a subset of objects to put into the knapsack so that

$$
\sum^{n} w_{i} v_{i} \leq c
$$

(that is, the objects fifi into the knapsack) and

$$
\sum^{n} p_{i} v_{i}
$$

is maximized (that is, i tite profit is maximized).

0/1 Knapsack Problem

- The naive method is to consider all 2^{n} possible subsets of the n objects and choose the one that fits into the knapsack and maximizes the profit.
- Let $F[i, x]$ be the maximum profit for a knapsack of capacity x using only objects $\{1,2, \ldots, i\}$. The DP formulation is:

$$
F[i, x]= \begin{cases}0 & x \geq 0, i=0 \\ -\infty & x=0, i=0 \\ \max \left\{F[i-1, x],\left(F\left[i-1, x-w_{i}\right]+p_{i}\right)\right\} & 1 \leq i=n\end{cases}
$$

0/1 Knapsack Problem

- Construct a table Fof size $n \times$ c in row-major order.
- Filling an entry in a row requires two entries from the previous row: one from the same column and one from the column offset by the weight of the object corresponding to the row.
- Computing each entry takes constant time; the sequential run time of this algorithm is θ (nc).
- The formulation is serial-monadic.

0/1 Knapsack Problem

Computing entries of table F for the $0 / 1$ knapsack problem. The computation of entry $F[i, j]$ requires communication with processing elements containing entries $F[i-1, j]$ and $F\left[i-1, j-w_{i}\right]$.

0/1 Knapsack Problem

- Using c processors in a PRAM, we can derive a simple parallel algorithm that runs in $O(n)$ time by partitioning the columns across processors.
- In a distributed memory machine, in the $j^{\text {in }}$ iteration, for computing $F[j ; r]$ at processing element $P_{r-1}, F[j-1, r]$ is available locally but $F\left[j-1, r-w_{j}\right]$ must be fetched.
- The communication operation is a circular shift and the time is given by $\left(t_{s}+t_{w}\right) \log c$. The total time is therefore t_{c} $+\left(t_{s}+t_{w}\right) \log c$.
- Across all n iterations (rows), the parallel time is $O(n \log$ c). Note that this is not cost optimal.

