

• Dynamic Programming

•0/1 Knapsack Problem

• Consider the problem of finding a shortest path between
a pair of vertices in an acyclic graph.

• An edge connecting node i to node j has cost c(i,j).

• The graph contains n nodes numbered 0,1,…, n-1, and
has an edge from node i to node j only if i < j. Node 0 is
source and node n-1 is the destination.

• Let f(x) be the cost of the shortest path from node 0 to
node x.

• A graph for which the shortest path between nodes 0 and

4 is to be computed.

• The solution to a DP problem is typically expressed as a
minimum (or maximum) of possible alternate solutions.

• If r represents the cost of a solution composed of
subproblems x1, x2,…, xl, then r can be written as

 Here, g is the composition function.

• If the optimal solution to each problem is determined by
composing optimal solutions to the subproblems and
selecting the minimum (or maximum), the formulation is
said to be a DP formulation.

The computation and composition of subproblem solutions
to solve problem f(x8).

• The recursive DP equation is also called the functional
equation or optimization equation.

• In the equation for the shortest path problem the
composition function is f(j) + c(j,x). This contains a single
recursive term (f(j)). Such a formulation is called
monadic.

• If the RHS has multiple recursive terms, the DP
formulation is called polyadic.

• The dependencies between subproblems can be
expressed as a graph.

• If the graph can be levelized (i.e., solutions to problems
at a level depend only on solutions to problems at the
previous level), the formulation is called serial, else it is
called non-serial.

• Based on these two criteria, we can classify DP
formulations into four categories - serial-monadic, serial-
polyadic, non-serial-monadic, non-serial-polyadic.

• This classification is useful since it identifies concurrency
and dependencies that guide parallel formulations.

• We are given a knapsack of capacity c and a set of n objects
numbered 1,2,…,n. Each object i has weight wi and profit pi.

• Let v = [v1, v2,…, vn] be a solution vector in which vi = 0 if object i is
not in the knapsack, and vi = 1 if it is in the knapsack.

• The goal is to find a subset of objects to put into the knapsack so that

 (that is, the objects fit into the knapsack) and

 is maximized (that is, the profit is maximized).

• The naive method is to consider all 2n possible subsets of

the n objects and choose the one that fits into the

knapsack and maximizes the profit.

• Let F[i,x] be the maximum profit for a knapsack of

capacity x using only objects {1,2,…,i}. The DP

formulation is:

• Construct a table F of size n x c in row-major order.

• Filling an entry in a row requires two entries from the

previous row: one from the same column and one from

the column offset by the weight of the object

corresponding to the row.

• Computing each entry takes constant time; the sequential
run time of this algorithm is Θ(nc).

• The formulation is serial-monadic.

Computing entries of table F for the 0/1 knapsack problem. The computation of
entry F[i,j] requires communication with processing elements containing

entries F[i-1,j] and F[i-1,j-wi].

• Using c processors in a PRAM, we can derive a simple
parallel algorithm that runs in O(n) time by partitioning the
columns across processors.

• In a distributed memory machine, in the jth iteration, for
computing F[j,r] at processing element Pr-1, F[j-1,r] is
available locally but F[j-1,r-wj] must be fetched.

• The communication operation is a circular shift and the
time is given by (ts + tw) log c. The total time is therefore tc
+ (ts + tw) log c.

• Across all n iterations (rows), the parallel time is O(n log
c). Note that this is not cost optimal.

