Course Name: Analysis and Design of Algorithms

Topics to be covered

Dynamic Programming
Optimal Binary Search Tree

Optimal Binary Search Trees

Problem

- Given sequence $K = k_1 < k_2 < \cdots < k_n$ of *n* sorted keys, with a search probability p_i for each key k_i .
- Want to build a binary search tree (BST) with minimum expected search cost.
- Actual cost = # of items examined.
- For key k_i , cost = depth_T(k_i)+1, where depth_T(k_i) = depth of k_i in BST T.

Expected Search Cost

$$= \sum_{i=1}^{n} (\operatorname{depth}_{T}(k_{i}) + 1) \cdot p_{i}$$

$$= \sum_{i=1}^{n} \operatorname{depth}_{T}(k_{i}) \cdot p_{i} + \sum_{i=1}^{n} p_{i}$$

$$= 1 + \sum_{i=1}^{n} \operatorname{depth}_{T}(k_{i}) \cdot p_{i} \quad (15.16)$$

Sum of probabilities is 1.

Example

• Consider 5 keys with these search probabilities: $p_{1k_2} = 0.25, p_2 = 0.2, p_3 = 0.05, p_4 = 0.2, p_5 = 0.3.$

i depending (κ_i) depending (κ_i) p_i			
1	1	0.25	
2	0	0	
3	2	0.1	
4	1	0.2	
5	2	0.6	
		1.15	

Therefore, E[search cost] = 2.15.

<u>Comp 122, Spring 2004</u>

Example

• $p_1 = 0.25, p_2 = 0.2, p_3 = 0.05, p_4 = 0.2, p_5 = 0.3.$

$i \operatorname{depth}_{T}(k_{i}) \operatorname{depth}_{T}(k_{i}) \cdot p_{i}$			
1	1	0.25	
2	0	0	
3	3	0.15	
4	2	0.4	
5	1	0.3	
		1.10	

Therefore, E[search cost] = 2.10.

This tree turns out to be optimal for this set of keys.

Example

Observations:

- Optimal BST may not have smallest height.
- Optimal BST may not have highest-probability key at root.
- Build by exhaustive checking?
 - Construct each *n*-node BST.
 - For each,

assign keys and compute expected search cost.

• But there are $\Omega(4^n/n^{3/2})$ different BSTs with *n* nodes.

• Any subtree of a BST contains keys in a contiguous range $k_i, ..., k_j$ for some $1 \le i \le j \le n$.

If *T* is an optimal BST and *T* contains subtree *T* with keys *k_i*, ..., *k_j*, then *T* must be an optimal BST for keys *k_i*, ..., *k_j*.
Proof: Cut and paste.

- One of the keys in k_i, ...,k_j, say k_r, where i ≤ r ≤ j, must be the root of an optimal subtree for these keys.
- Left subtree of k_r contains k_i, \dots, k_{r-1} .
- Right subtree of k_r contains k_r+1 , .

To find an optimal BST

- Examine all candidate roots k_r , for $i \le r \le j_1$
- Determine all optimal BSTs containing $k_{j},...,k_{r-1}$ and containing $k_{r+1},...,k_{j}$

Recursive Solution

- Find optimal BST for k_i, \dots, k_j , where $i \ge 1$, $j \le n$, $j \ge i-1$. When j = i-1, the tree is empty.
- Define e[i, j] = expected search cost of optimal BST for k_i,...,k_j.
- If j = i-1, then e[i, j] = 0.
- If $j \ge i$,
 - Select a root k, for some $i \le r \le j$.
 - Recursively make an optimal BSTs
 - for $k_{i},..,k_{r-1}$ as the left subtree, and
 - for k_{r+1}, \dots, k_r as the right subtree.

Recursive Solution

- When the OPT subtree becomes a subtree of a node:
 - Depth of every node in OPT subtree goes up by 1.
 - Expected search cost increases by

$$w(i, j) = \sum_{l=i}^{j} p_l$$

from (15.16)

- If k_r is the root of an optimal BST for k_i, \dots, k_j :
 - $e[i, j] = p_r + (e[i, r-1] + w(i, r-1)) + (e[r+1, j] + w(r+1, j))$

= e[i, r-1] + e[r+1, j] + W(i, j).(because $w(i, j) = w(i, r-1) + p_r + w(r+1, j)$)

But, we don't know k_r. Hence,

$$e[i, j] = \begin{cases} 0 & \text{if } j = i - 1 \\ \min_{i \le r \le j} \{e[i, r - 1] + e[r + 1, j] + w(i, j)\} & \text{if } i \le j \end{cases}$$

Computing an Optimal Solution

For each subproblem (*i*,*j*), store:

- expected search cost in a table e[1 ...n+1 , 0 ...n]
 - Will use only entries e[i, j], where $j \ge i-1$.
- root[*i*, *j*] = root of subtree with keys k_{j}, \dots, k_{j} , for $1 \le i \le j \le n$.
- w[1...n+1, 0...n] = sum of probabilities
 - w[i, i-1] = 0 for $1 \le i \le n$.
 - $w[i, j] = w[i, j-1] + p_j$ for $1 \le i \le j \le n$.

P<mark>seudo-code</mark>

2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.

Consider all trees with *l* keys. -Fix the first key. -Fix the last key

> Determine the root of the optimal (sub)tree

Time: $O(n^3)$

Elements of Dynamic Programming

- Optimal substructure
- Overlapping subproblems

- Show that a solution to a problem consists of making a choice, which leaves one or more subproblems to solve.
- Suppose that you are given this last choice that leads to an optimal solution.
- Given this choice, determine which subproblems arise and how to characterize the resulting space of subproblems.
- Show that the solutions to the subproblems used within the optimal solution must themselves be optimal. Usually use cut-and-paste.
- Need to ensure that a wide enough range of choices and subproblems are<u>consider</u>ed.

- Optimal substructure varies across problem domains:
 - 1. *How many subproblems* are used in an optimal solution.
 - 2. How many choices in determining which subproblem(s) to use.
- Informally, running time depends on (# of subproblems overall) × (# of choices).
- How many subproblems and choices do the examples considered contain?
- Dynamic programming uses optimal substructure bottom up.
 - *First* find optimal solutions to subproblems.
 - Then choose which to use in optimal solution to the problem.

- Does optimal substructure apply to all optimization problems? <u>No</u>.
- Applies to determining the shortest path but NOT the longest simple path of an unweighted directed graph.
- Why?
 - Shortest path has independent subproblems.
 - Solution to one subproblem does not affect solution to another subproblem of the same problem.
 - Subproblems are not independent in longest simple path.
 - Solution to one subproblem affects the solutions to other subproblems.
 <u>Comp 122, Spring 2004</u>
 - Evample:

Overlapping Subproblems

- The space of subproblems must be "small".
- The total number of distinct subproblems is a polynomial in the input size.
 - A recursive algorithm is exponential because it solves the same problems repeatedly.
 - If divide-and-conquer is applicable, then each problem solved will be brand new.