


 

• Dynamic Programming 

• Optimal Binary Search Tree 



• Problem 

• Given sequence K = k1 < k2 <··· < kn of n sorted keys,  

with a search probability pi for each key ki. 

• Want to build a binary search tree (BST)  

with minimum expected search cost. 

• Actual cost = # of items examined. 

• For key ki, cost = depthT(ki)+1, where depthT(ki) = depth 

of ki in BST T . 
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Sum of probabilities is 1. 

(15.16) 



• Consider 5 keys with these search probabilities: 

p1 = 0.25, p2 = 0.2, p3 = 0.05, p4 = 0.2, p5 = 0.3. 
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k2 

k1 k4 

k3 k5 

i depthT(ki) depthT(ki)·pi 

1       1                     0.25 

2       0                     0 

3       2                     0.1 

4       1                     0.2 

5       2                     0.6 

                               1.15 

Therefore, E[search cost] = 2.15. 



• p1 = 0.25, p2 = 0.2, p3 = 0.05, p4 = 0.2, p5 = 0.3. 
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i depthT(ki) depthT(ki)·pi 

1       1                     0.25 

2       0                     0 

3       3                     0.15 

4       2                     0.4 

5       1                     0.3 

                               1.10 

Therefore, E[search cost] = 2.10. 

k2 

k1 k5 

k4 

k3 This tree turns out to be optimal for this set of keys. 



• Observations: 

• Optimal BST may not have smallest height. 

• Optimal BST may not have highest-probability key at root. 

• Build by exhaustive checking? 

• Construct each n-node BST. 

• For each,  

     assign keys and compute expected search cost. 

• But there are (4n/n3/2) different BSTs with n nodes. 
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• Any subtree of a BST contains keys in a 
contiguous range ki, ..., kj for some 1 ≤ i ≤ j ≤ n. 

 

 

 

 

 

• If T is an optimal BST and  
     T contains subtree T with keys ki, ... ,kj ,  
        then T must be an optimal BST for keys ki, 
..., kj. 

• Proof: Cut and paste. 
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• One of the keys in ki, …,kj,  say kr, where i ≤ r ≤ j,  

must be the root of an optimal subtree for these 

keys. 

• Left subtree of kr contains ki,...,kr1. 

• Right subtree of kr contains kr+1, ...,kj. 

 

 

• To find an optimal BST: 
• Examine all candidate roots kr , for i ≤ r ≤ j 

• Determine all optimal BSTs containing ki,...,kr1 and containing 

kr+1,...,kj 
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kr 

ki kr-1 kr+1 kj 



• Find optimal BST for ki,...,kj, where i ≥ 1, j ≤ n, j ≥ i1. 

When j = i1, the tree is empty. 

• Define e[i, j ] = expected search cost of optimal BST for 

ki,...,kj.  

 

• If j = i1, then e[i, j ] = 0. 

• If j ≥ i, 
• Select a root kr, for some i ≤ r ≤ j . 

• Recursively make an optimal BSTs  

• for ki,..,kr1 as the left subtree, and 

• for kr+1,..,kj as the right subtree. 
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• When the OPT subtree becomes a subtree of a node: 

• Depth of every node in OPT subtree goes up by 1. 

• Expected search cost increases by 

 

 

• If kr is the root of an optimal BST for ki,..,kj : 

• e[i, j ] = pr + (e[i, r1] + w(i, r1))+(e[r+1, j] + w(r+1, j)) 

              = e[i, r1] + e[r+1, j] + w(i, j). 

• But, we don’t know kr. Hence, 
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from (15.16) 

(because w(i, j)=w(i,r1) + pr + w(r + 1, j)) 



For each subproblem (i,j), store: 

• expected search cost in a table e[1 ..n+1 , 0 ..n] 

• Will use only entries e[i, j ], where j ≥ i1. 

• root[i, j ] = root of subtree with keys ki,..,kj, for 1 ≤ i 

≤ j ≤ n. 

• w[1..n+1, 0..n] = sum of probabilities 

• w[i, i1] = 0 for 1 ≤ i ≤ n. 

• w[i, j ] = w[i, j-1] + pj for 1 ≤ i ≤ j ≤ n. 
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OPTIMAL-BST(p, q, n) 
1. for i ← 1 to n + 1 
2.     do e[i, i 1] ← 0 
3.          w[i, i 1] ← 0 
4. for l ← 1 to n 
5.     do for i ← 1 to nl + 1 
6.          do j ←i + l1 
7.              e[i, j ]←∞ 
8.              w[i, j ] ← w[i, j1] + pj 

9.              for r ←i to j 
10.                   do t ← e[i, r1] + e[r + 1, j ] + w[i, j 

] 
11.                        if t < e[i, j ] 
12.                             then e[i, j ] ← t 
13.                                      root[i, j ] ←r 
14.   return e and root 
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Time: O(n3) 

Consider all trees with l keys. 

Fix the first key. 

Fix the last key 

Determine the root  

of the optimal  

(sub)tree 



• Optimal substructure 

• Overlapping subproblems 
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• Show that a solution to a problem consists of making 
a choice, which leaves one or more subproblems to 
solve. 

• Suppose that you are given this last choice that 
leads to an optimal solution. 

• Given this choice, determine which subproblems 
arise and how to characterize the resulting space of 
subproblems. 

• Show that the solutions to the subproblems used 
within the optimal solution must themselves be 
optimal. Usually use cut-and-paste. 

• Need to ensure that a wide enough range of choices 
and subproblems are considered. 
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• Optimal substructure varies across problem 
domains: 
• 1. How many subproblems are used in an optimal solution. 

• 2. How many choices in determining which subproblem(s) to 
use. 

• Informally, running time depends on (# of 
subproblems overall)  (# of choices). 

• How many subproblems and choices do the 
examples considered contain? 

• Dynamic programming uses optimal substructure 
bottom up. 
• First find optimal solutions to subproblems. 

• Then choose which to use in optimal solution to the 
problem. 

Comp 122, Spring 2004 



• Does optimal substructure apply to all 
optimization problems?  No. 

• Applies to determining the shortest path but NOT 
the longest simple path of an unweighted 
directed graph. 

• Why? 
• Shortest path has independent subproblems. 

• Solution to one subproblem does not affect solution to 
another subproblem of the same problem. 

• Subproblems are not independent in longest simple 
path. 
• Solution to one subproblem affects the solutions to other 

subproblems. 

• Example: 
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• The space of subproblems must be “small”. 

• The total number of distinct subproblems is a 

polynomial in the input size. 

• A recursive algorithm is exponential because it solves 

the same problems repeatedly. 

• If divide-and-conquer is applicable, then each problem 

solved will be brand new. 
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