

• Dynamic Programming

• Optimal Binary Search Tree

• Problem

• Given sequence K = k1 < k2 <··· < kn of n sorted keys,

with a search probability pi for each key ki.

• Want to build a binary search tree (BST)

with minimum expected search cost.

• Actual cost = # of items examined.

• For key ki, cost = depthT(ki)+1, where depthT(ki) = depth

of ki in BST T .

Comp 122, Spring 2004

n

i

iiT

n

i

n

i

iiiT

n

i

iiT

pk

ppk

pk

TE

1

1 1

1

)(depth1

)(depth

)1)(depth(

]in cost search [

Comp 122, Spring 2004

Sum of probabilities is 1.

(15.16)

• Consider 5 keys with these search probabilities:

p1 = 0.25, p2 = 0.2, p3 = 0.05, p4 = 0.2, p5 = 0.3.

Comp 122, Spring 2004

k2

k1 k4

k3 k5

i depthT(ki) depthT(ki)·pi

1 1 0.25

2 0 0

3 2 0.1

4 1 0.2

5 2 0.6

 1.15

Therefore, E[search cost] = 2.15.

• p1 = 0.25, p2 = 0.2, p3 = 0.05, p4 = 0.2, p5 = 0.3.

Comp 122, Spring 2004

i depthT(ki) depthT(ki)·pi

1 1 0.25

2 0 0

3 3 0.15

4 2 0.4

5 1 0.3

 1.10

Therefore, E[search cost] = 2.10.

k2

k1 k5

k4

k3 This tree turns out to be optimal for this set of keys.

• Observations:

• Optimal BST may not have smallest height.

• Optimal BST may not have highest-probability key at root.

• Build by exhaustive checking?

• Construct each n-node BST.

• For each,

 assign keys and compute expected search cost.

• But there are (4n/n3/2) different BSTs with n nodes.

Comp 122, Spring 2004

• Any subtree of a BST contains keys in a
contiguous range ki, ..., kj for some 1 ≤ i ≤ j ≤ n.

• If T is an optimal BST and
 T contains subtree T with keys ki, ... ,kj ,
 then T must be an optimal BST for keys ki,
..., kj.

• Proof: Cut and paste.
 Comp 122, Spring 2004

T

T

• One of the keys in ki, …,kj, say kr, where i ≤ r ≤ j,

must be the root of an optimal subtree for these

keys.

• Left subtree of kr contains ki,...,kr1.

• Right subtree of kr contains kr+1, ...,kj.

• To find an optimal BST:
• Examine all candidate roots kr , for i ≤ r ≤ j

• Determine all optimal BSTs containing ki,...,kr1 and containing

kr+1,...,kj

Comp 122, Spring 2004

kr

ki kr-1 kr+1 kj

• Find optimal BST for ki,...,kj, where i ≥ 1, j ≤ n, j ≥ i1.

When j = i1, the tree is empty.

• Define e[i, j] = expected search cost of optimal BST for

ki,...,kj.

• If j = i1, then e[i, j] = 0.

• If j ≥ i,
• Select a root kr, for some i ≤ r ≤ j .

• Recursively make an optimal BSTs

• for ki,..,kr1 as the left subtree, and

• for kr+1,..,kj as the right subtree.

Comp 122, Spring 2004

• When the OPT subtree becomes a subtree of a node:

• Depth of every node in OPT subtree goes up by 1.

• Expected search cost increases by

• If kr is the root of an optimal BST for ki,..,kj :

• e[i, j] = pr + (e[i, r1] + w(i, r1))+(e[r+1, j] + w(r+1, j))

 = e[i, r1] + e[r+1, j] + w(i, j).

• But, we don’t know kr. Hence,

j

il

lpjiw),(

jijiwjrerie

ij
jie

jri
 if)},(],1[]1,[{min

1 if0
],[

Comp 122, Spring 2004

from (15.16)

(because w(i, j)=w(i,r1) + pr + w(r + 1, j))

For each subproblem (i,j), store:

• expected search cost in a table e[1 ..n+1 , 0 ..n]

• Will use only entries e[i, j], where j ≥ i1.

• root[i, j] = root of subtree with keys ki,..,kj, for 1 ≤ i

≤ j ≤ n.

• w[1..n+1, 0..n] = sum of probabilities

• w[i, i1] = 0 for 1 ≤ i ≤ n.

• w[i, j] = w[i, j-1] + pj for 1 ≤ i ≤ j ≤ n.

Comp 122, Spring 2004

OPTIMAL-BST(p, q, n)
1. for i ← 1 to n + 1
2. do e[i, i 1] ← 0
3. w[i, i 1] ← 0
4. for l ← 1 to n
5. do for i ← 1 to nl + 1
6. do j ←i + l1
7. e[i, j]←∞
8. w[i, j] ← w[i, j1] + pj

9. for r ←i to j
10. do t ← e[i, r1] + e[r + 1, j] + w[i, j

]
11. if t < e[i, j]
12. then e[i, j] ← t
13. root[i, j] ←r
14. return e and root

Comp 122, Spring 2004

Time: O(n3)

Consider all trees with l keys.

Fix the first key.

Fix the last key

Determine the root

of the optimal

(sub)tree

• Optimal substructure

• Overlapping subproblems

Comp 122, Spring 2004

• Show that a solution to a problem consists of making
a choice, which leaves one or more subproblems to
solve.

• Suppose that you are given this last choice that
leads to an optimal solution.

• Given this choice, determine which subproblems
arise and how to characterize the resulting space of
subproblems.

• Show that the solutions to the subproblems used
within the optimal solution must themselves be
optimal. Usually use cut-and-paste.

• Need to ensure that a wide enough range of choices
and subproblems are considered.

Comp 122, Spring 2004

• Optimal substructure varies across problem
domains:
• 1. How many subproblems are used in an optimal solution.

• 2. How many choices in determining which subproblem(s) to
use.

• Informally, running time depends on (# of
subproblems overall) (# of choices).

• How many subproblems and choices do the
examples considered contain?

• Dynamic programming uses optimal substructure
bottom up.
• First find optimal solutions to subproblems.

• Then choose which to use in optimal solution to the
problem.

Comp 122, Spring 2004

• Does optimal substructure apply to all
optimization problems? No.

• Applies to determining the shortest path but NOT
the longest simple path of an unweighted
directed graph.

• Why?
• Shortest path has independent subproblems.

• Solution to one subproblem does not affect solution to
another subproblem of the same problem.

• Subproblems are not independent in longest simple
path.
• Solution to one subproblem affects the solutions to other

subproblems.

• Example:

Comp 122, Spring 2004

• The space of subproblems must be “small”.

• The total number of distinct subproblems is a

polynomial in the input size.

• A recursive algorithm is exponential because it solves

the same problems repeatedly.

• If divide-and-conquer is applicable, then each problem

solved will be brand new.

Comp 122, Spring 2004

