


Topics to be covered

* Dynamic Programming
* General Method
* Least Common Subsequence




Dynamic Programming

« Dynamic Programming is an algorithm design technique
{o] . often minimizing or
maximizing.

divide and conquer, DP solves problems by
combining solutions to subproblems.

. divide and conquer, subproblems are not

iIndependent.

» Subproblems may share subsubproblems,

* However, solution to one subproblem may not affect the solutions
to other subproblems of the same problem. (More on this later.)

DP reduces computation by

* Solving subproblems in a bottom-up fashion.

» Storing solution to a subproblem the first time it is solved.

 Looking up the solution when subproblem is encountered again.

Key: determine structure of optimal solutions
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Steps in Dynamic Programming

1. Characterize structure of an optimal solution.
2. Define value of optimal solution recursively.

3. Compute optimal solution values either with
caching or In a table.

4. Construct an optimal solution from computed values.
WEe'll study these with the help of examples.
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Longest Common Subsequence

Given 2 sequences, X = (Xq,...,X,) and

Y = (Yy,...,.¥n), find @ common subsequence whose length

IS maximum.

gl

A\

|/

Subseguence need not be consecutive, but must

be In order.
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Other sequence questions

: Given 2 sequences, X = (Xq,...,Xy and Y =
(Y15, Yn), What Is the minimum number of deletions,
Insertions, and changes that you must do to change one
to another?

- Given a score matrix on
amino acid pairs, s(a,b) for a,pe{A} UA,
and 2 amino acid sequences, X = (Xq,...,X,yeA™ and Y =
(Y1, Yy €AN, find the alignment with lowest score...
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More problems

Given sequence K = k; <k, <--- <k, of n
sorted keys, with a search probability p; for each key k;,
build a binary search tree (BST) with minimum expected
search cosit.

Given a sequence of matrices
A A, ... A, with A; of dimension m;xn;, insert parenthesis
to minimize the total number of scalar multiplications.
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Naive Algorithm

« For every subsequence of X, check whether it'’s a
subsequence of Y .
. o(n2M).
» 2™ subsequences of X to check.

* Each subsequence takes ©(n) time to check:
scan Y for first letter, for second, and so on.
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Optimal Substructure

Theorem

LetZ=(zq,...,7)beany LCSof Xand Y .

1. If X, =Y, thenz, =X, =y,and Z,_; Isan LCS of X, and Y ;.
2. 1f X, =Y, theneither z, # x,and Zisan LCS of X, ; and Y .

3. or z,#Yy,and Zisan LCS of Xand Y, ;.

prefix X = (Xy,...,X;) IS the first I letters of X.
This says what any longest common subsequence must look

like;
do you believe it?
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Optimal Substructure

Theorem

LetZ=(z4,...,Z)beany LCSof Xand Y.

1. If X, =Y, thenz, =x,=y,and Z,_; isan LCS of X, ; and Y,,_;.
2. If X, #Y,, then either z, = x, and Zi1san LCS of X, ; and Y .

3. or z,#Yy,and.Zisan LCS of Xand Y, _;.

(case 1: X, = Y,)

Any sequence Z’ that does not end in X, = y,, can be made longer by adding
Xm = Y, to the end. Therefore,

(1) longest common subsequence (LCS) Z must end Iin X, = Y,
(2) Z,.11s acommon subsequence of X, ; and Y4, and
(3) there is no longer CS of X, and Y,,_;, or Z would not be an LCS.
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Optimal Substructure

Theorem

LetZ=(zq,...,7)beany LCSof Xand Y .

1. If X, =Y, thenz, =x,=y,and Z,_; Isan LCS of X, and Y ;.
2. If X, # Y, then either z, = x,and Z isan LCS of X, and Y .

3. or z,#Yy,and Zisan LCS of Xand Y, ;.

(case 2: X, #VY,, and z, #X.)
Since Z does not end in X,
(1) Zis a common subsequence of X, ; and Y, and

(2) there is no longer CS of X, ; and Y, or Z would not be an
LCSH
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Recursive Solution

* Define
* We want c[m,n].

0
cli, j]]=<c[i-1, j-1]+1
max(c[i -1, j],c[i, ] -1])

If 1=00r j =0,
if1,]>0and x; =y,

ifI,]>0and x; =Y.

This gives a recursive algorithm and solves the problem.

But does it solve it well?
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Recursive Solution
0 If o emptyor S empty,
Cla, B] =+ c[ prefixa, prefix5]+1 If end(a) =end(p5),

max(c[ prefixe, £],cla, prefix3]) if end(«) =end(f).

c[springtime, printing]

-

c[springtim, printing]  c[springtime, printin]

N -

[springti, printing] [springtim, printin]  [springt: ., printin] [springtime, printi]

/O i

springt, printing] [springti, printin] [springtim, printi] [springtime, print]

Comp 122, Spring 2004




Recursive Solution
0 If o emptyor S empty,
Cla, B] =+ c[ prefixa, prefix5]+1 If end(a) =end(p5),

max(c[ prefixe, £],cla, prefix3]) if end(«x) =end( ).

*Keep track of c[a,f] In a

table of nm entries:

top/down

*bottom/up

Comp 17




Computing the length of an LCS

LCS-LENGTH (X, Y)
1. m « length[X]

2. n « length[Y]
3. fori—1tom
4 doc[i,0] <0
5. forj<—0ton
S for??_cgoié]n‘]_ 0 b[i, j ] points to table entry
8 doforj—1ton whose subproblem we used
9. do if x; =y In solving LCS of X;
10. thencfi,j]« c[i-1,j-1]+1 | and ;.
11. b[i, ] ] X~
A
ﬁj e'set'rfe",ﬂ' C%i’, JJ- ]] :_C[CI’[iJ_ 1] il c[m,n] contains the length
14. bfi, j ] < “” of an LCS of X and Y.
15. else cli, j ] < c[i, j-1]
LE: bfi, j] « O(mn)

17.returncandb
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Constructing an LCS

PRINT-LCS (b, X, 1, ])

1. fi=0o0r]=0

2. then return

3. 1f bli, jr]\= c 7

4, then PRINT-LCS(b, X, i-1,
J-1)

5. print x;

6. elseif b[i,j] ="

7. L then PRINT-LCS(b, X,

*Inigal @HésﬁﬂWﬂ:ﬂ@ X, m d]
*When b[i, ] ] =, we have extended LCS by one character. So

LCS = entries with™\ in them.
*Time: O(m+n)
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