

• Dynamic Programming

• General Method

• Least Common Subsequence

• Dynamic Programming is an algorithm design technique
for optimization problems: often minimizing or
maximizing.

• Like divide and conquer, DP solves problems by
combining solutions to subproblems.

• Unlike divide and conquer, subproblems are not
independent.
• Subproblems may share subsubproblems,

• However, solution to one subproblem may not affect the solutions
to other subproblems of the same problem. (More on this later.)

• DP reduces computation by
• Solving subproblems in a bottom-up fashion.

• Storing solution to a subproblem the first time it is solved.

• Looking up the solution when subproblem is encountered again.

• Key: determine structure of optimal solutions
Comp 122, Spring 2004

1. Characterize structure of an optimal solution.

2. Define value of optimal solution recursively.

3. Compute optimal solution values either top-down with

caching or bottom-up in a table.

4. Construct an optimal solution from computed values.

We’ll study these with the help of examples.

Comp 122, Spring 2004

• Problem: Given 2 sequences, X = x1,...,xm and
Y = y1,...,yn, find a common subsequence whose length
is maximum.

springtime ncaa tournament basketball

printing north carolina snoeyink

Subsequence need not be consecutive, but must
be in order.

Comp 122, Spring 2004

• Edit distance: Given 2 sequences, X = x1,...,xm and Y =

y1,...,yn, what is the minimum number of deletions,

insertions, and changes that you must do to change one

to another?

• Protein sequence alignment: Given a score matrix on

amino acid pairs, s(a,b) for a,b{}A,

and 2 amino acid sequences, X = x1,...,xmAm and Y =

y1,...,ynAn, find the alignment with lowest score…

Comp 122, Spring 2004

Optimal BST: Given sequence K = k1 < k2 <··· < kn of n

sorted keys, with a search probability pi for each key ki,

build a binary search tree (BST) with minimum expected

search cost.

Matrix chain multiplication: Given a sequence of matrices

A1 A2 … An, with Ai of dimension mini, insert parenthesis

to minimize the total number of scalar multiplications.

Minimum convex decomposition of a polygon,

Hydrogen placement in protein structures, …

Comp 122, Spring 2004

• For every subsequence of X, check whether it’s a

subsequence of Y .

• Time: Θ(n2m).

• 2m subsequences of X to check.

• Each subsequence takes Θ(n) time to check:

scan Y for first letter, for second, and so on.

Comp 122, Spring 2004

Notation:

 prefix Xi = x1,...,xi is the first i letters of X.

This says what any longest common subsequence must look
like;
do you believe it?

Comp 122, Spring 2004

Theorem

Let Z = z1, . . . , zk be any LCS of X and Y .

1. If xm = yn, then zk = xm = yn and Zk-1 is an LCS of Xm-1 and Yn-1.

2. If xm  yn, then either zk  xm and Z is an LCS of Xm-1 and Y .

3. or zk  yn and Z is an LCS of X and Yn-1.

Proof: (case 1: xm = yn)

Any sequence Z’ that does not end in xm = yn can be made longer by adding
xm = yn to the end. Therefore,

(1) longest common subsequence (LCS) Z must end in xm = yn.

(2) Zk-1 is a common subsequence of Xm-1 and Yn-1, and

(3) there is no longer CS of Xm-1 and Yn-1, or Z would not be an LCS.

Comp 122, Spring 2004

Theorem

Let Z = z1, . . . , zk be any LCS of X and Y .

1. If xm = yn, then zk = xm = yn and Zk-1 is an LCS of Xm-1 and Yn-1.

2. If xm  yn, then either zk  xm and Z is an LCS of Xm-1 and Y .

3. or zk  yn and Z is an LCS of X and Yn-1.

Proof: (case 2: xm  yn, and zk  xm)

Since Z does not end in xm,

(1) Z is a common subsequence of Xm-1 and Y, and

(2) there is no longer CS of Xm-1 and Y, or Z would not be an

LCS.

Comp 122, Spring 2004

Theorem

Let Z = z1, . . . , zk be any LCS of X and Y .

1. If xm = yn, then zk = xm = yn and Zk-1 is an LCS of Xm-1 and Yn-1.

2. If xm  yn, then either zk  xm and Z is an LCS of Xm-1 and Y .

3. or zk  yn and Z is an LCS of X and Yn-1.

• Define c[i, j] = length of LCS of Xi and Yj .

• We want c[m,n].

















. and 0, if])1,[],,1[max(

, and 0, if1]1,1[

,0or 0 if0

],[

ji

ji

yxjijicjic

yxjijic

ji

jic

Comp 122, Spring 2004

This gives a recursive algorithm and solves the problem.

But does it solve it well?













.)end()end(if]),[],,[max(

,)end()end(if1],[

,empty or empty if0

],[









prefixcprefixc

prefixprefixcc

Comp 122, Spring 2004

c[springtime, printing]

c[springtim, printing] c[springtime, printin]

[springti, printing] [springtim, printin] [springtim, printin] [springtime, printi]

[springt, printing] [springti, printin] [springtim, printi] [springtime, print]













.)end()end(if]),[],,[max(

,)end()end(if1],[

,empty or empty if0

],[









prefixcprefixc

prefixprefixcc

Comp 122, Spring 2004

p r i n t i n g

s

p

r

i

n

g

t

i

m

e

•Keep track of c[,] in a

table of nm entries:

•top/down

•bottom/up

LCS-LENGTH (X, Y)

1. m ← length[X]

2. n ← length[Y]

3. for i ← 1 to m

4. do c[i, 0] ← 0

5. for j ← 0 to n

6. do c[0, j] ← 0

7. for i ← 1 to m

8. do for j ← 1 to n

9. do if xi = yj

10. then c[i, j] ← c[i1, j1] + 1

11. b[i, j] ← “ ”

12. else if c[i1, j] ≥ c[i, j1]

13. then c[i, j] ← c[i 1, j]

14. b[i, j] ← “↑”

15. else c[i, j] ← c[i, j1]

16. b[i, j] ← “←”

17.return c and b

Comp 122, Spring 2004

b[i, j] points to table entry

whose subproblem we used

in solving LCS of Xi

and Yj.

c[m,n] contains the length

of an LCS of X and Y.

Time: O(mn)

PRINT-LCS (b, X, i, j)

1. if i = 0 or j = 0

2. then return

3. if b[i, j] = “ ”

4. then PRINT-LCS(b, X, i1,
j1)

5. print xi

6. elseif b[i, j] = “↑”

7. then PRINT-LCS(b, X,
i1, j)

8. else PRINT-LCS(b, X, i, j1)

Comp 122, Spring 2004

•Initial call is PRINT-LCS (b, X,m, n).

•When b[i, j] = , we have extended LCS by one character. So

LCS = entries with in them.

•Time: O(m+n)

