


 

• Dynamic Programming 

• General Method 

• Least Common Subsequence 



• Dynamic Programming is an algorithm design technique 
for optimization problems: often minimizing or 
maximizing. 

• Like divide and conquer, DP solves problems by 
combining solutions to subproblems. 

• Unlike divide and conquer, subproblems are not 
independent. 
• Subproblems may share subsubproblems, 

• However, solution to one subproblem may not affect the solutions 
to other subproblems of the same problem. (More on this later.) 

• DP reduces computation by  
• Solving subproblems in a bottom-up fashion. 

• Storing solution to a subproblem the first time it is solved. 

• Looking up the solution when subproblem is encountered again. 

• Key: determine structure of optimal solutions 
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1. Characterize structure of an optimal solution. 

2. Define value of optimal solution recursively. 

3. Compute optimal solution values either top-down with 

caching or bottom-up in a table. 

4. Construct an optimal solution from computed values. 

We’ll study these with the help of examples. 
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• Problem: Given 2 sequences, X = x1,...,xm and  
Y = y1,...,yn, find a common subsequence whose length 
is maximum.  

 

springtime  ncaa tournament basketball 

 

 

printing  north carolina  snoeyink 

 

 

Subsequence need not be consecutive, but must 
be in order. 
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• Edit distance: Given 2 sequences, X = x1,...,xm and Y = 

y1,...,yn, what is the minimum number of deletions, 

insertions, and changes that you must do to change one 

to another?  

• Protein sequence alignment: Given a score matrix  on 

amino acid pairs, s(a,b) for a,b{}A,  

and 2 amino acid sequences, X = x1,...,xmAm  and Y = 

y1,...,ynAn, find the alignment with lowest score… 
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Optimal BST: Given sequence K = k1 < k2 <··· < kn of n 

sorted keys, with a search probability pi for each key ki, 

build a binary search tree (BST) with minimum expected 

search cost. 

Matrix chain multiplication: Given a sequence of matrices 

A1 A2 … An, with Ai of dimension mini, insert parenthesis 

to minimize the total number of scalar multiplications. 

Minimum convex decomposition of a polygon, 

Hydrogen placement in protein structures, … 
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• For every subsequence of X, check whether it’s a 

subsequence of Y . 

• Time: Θ(n2m). 

• 2m subsequences of X to check. 

• Each subsequence takes Θ(n) time to check:  

scan Y for first letter, for second, and so on. 
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Notation: 

 prefix Xi = x1,...,xi is the first i letters of X. 
     

This says what any longest common subsequence must look 
like;  
do you believe it? 
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Theorem  

Let Z = z1, . . . , zk be any LCS of X and Y . 

1. If xm = yn, then zk = xm = yn and Zk-1 is an LCS of Xm-1 and Yn-1. 

2. If xm  yn, then either zk  xm and Z is an LCS of Xm-1 and Y . 

3.                               or  zk  yn and Z is an LCS of X and Yn-1. 



Proof: (case 1: xm = yn) 

Any sequence Z’ that does not end in xm = yn can be made longer by adding 
xm = yn to the end. Therefore,  

(1) longest common subsequence (LCS) Z must end in xm = yn.  

(2)  Zk-1 is a common subsequence of Xm-1 and Yn-1, and  

(3) there is no longer CS of Xm-1 and Yn-1, or Z would not be an LCS. 
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Proof: (case 2: xm  yn, and zk  xm) 

Since Z does not end in xm,  

(1)  Z is a common subsequence of Xm-1 and Y, and  

(2) there is no longer CS of Xm-1 and Y, or Z would not be an 

LCS. 
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• Define c[i, j] = length of LCS of Xi and Yj .  

• We want c[m,n]. 
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This gives a recursive algorithm and solves the problem. 

But does it solve it well? 
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c[springtime, printing] 

 

c[springtim, printing]      c[springtime, printin] 

 

[springti, printing] [springtim, printin]    [springtim, printin] [springtime, printi] 

 

[springt, printing] [springti, printin] [springtim, printi] [springtime, print] 
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•Keep track of c[,] in a 

table of nm entries: 

•top/down  

•bottom/up 



LCS-LENGTH (X, Y) 

1. m ← length[X] 

2. n ← length[Y] 

3. for i ← 1 to m 

4.      do c[i, 0] ← 0 

5. for j ← 0 to n 

6.      do c[0, j ] ← 0 

7. for i ← 1 to m 

8.       do for j ← 1 to n 

9.            do if xi = yj 

10.                     then c[i, j ] ← c[i1, j1] + 1 

11.                              b[i, j ] ← “   ” 

12.                     else if c[i1, j ] ≥ c[i, j1] 

13.                            then c[i, j ] ← c[i 1, j ] 

14.                                     b[i, j ] ← “↑” 

15.                             else c[i, j ] ← c[i, j1] 

16.                                    b[i, j ] ← “←” 

17.return c and b 
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b[i, j ] points to table entry 

whose subproblem we used 

in solving LCS of Xi 

and Yj. 

c[m,n] contains the length 

of an LCS of X and Y. 

Time: O(mn) 



PRINT-LCS (b, X, i, j) 

1. if i = 0 or j = 0 

2.     then return 

3. if b[i, j ] = “   ” 

4.     then PRINT-LCS(b, X, i1, 
j1) 

5.              print xi 

6.     elseif b[i, j ] = “↑” 

7.               then PRINT-LCS(b, X, 
i1, j) 

8. else PRINT-LCS(b, X, i, j1) 
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•Initial call is PRINT-LCS (b, X,m, n). 

•When b[i, j ] =    , we have extended LCS by one character. So 

LCS = entries with      in them. 

•Time: O(m+n) 

 


