Course Name: Analysis and Design of Algorithms

Topics to be covered

- Dynamic Programming
- General Method
- Least Common Subsequence

Dynamic Programming

- Dynamic Programming is an algorithm design technique for optimization problems: often minimizing or maximizing.
- Like divide and conquer, DP solves problems by combining solutions to subproblems.
- Unlike divide and conquer, subproblems are not independent.
- Subproblems may share subsubproblems,
- However, solution to one subproblem may not affect the solutions to other subproblems of the same problem. (More on this later.)
- DP reduces computation by
- Solving subproblems in a bottom-up fashion.
- Storing solution to a subproblem the first time it is solved.
- Looking up the solution when subproblem is encountered again.
- Key: determine structure of optimal solutions

Steps in Dynamic Programming

1. Characterize structure of an optimal solution.
2. Define value of optimal solution recursively.
3. Compute optimal solution values either iop-down with caching or bottom-up in a table.
4. Construct an optimal solution from computed values. We'll study these with the help of examples.

Longest Common Subsequence

- Problem: Given 2 sequences, $X=\left\langle x_{1}, \ldots, x_{m}\right\rangle$ and $Y=\left\langle y_{1}, \ldots, y_{n}\right\rangle$, find a common subsequence whose length is maximum.

Subsequence need not be consecutive, but must be in order.

Other sequence questions

-

Given 2 sequences, $X=\left\langle x_{1}, \ldots, x_{m}\right\rangle$ and $Y=$ $\left\langle y_{1}, \ldots, y_{n}\right\rangle$, what is the minimum number of deletions, insertions, and changes that you must do to change one to another?

- Protein sequence alignment: Given a score matrix on amino acid pairs, $s(a, b)$ for $a, b \in\{\Lambda\} \cup A$, and 2 amino acid sequences, $X=\left\langle x_{1}, \ldots, x_{m}\right\rangle \in A^{m}$ and $Y=$ $\left\langle y_{1}, \ldots, y_{n}\right\rangle \in A^{n}$, find the alignment with lowest score...

More problems

Given sequence $K=k_{1}<k_{2}<\cdots<k_{n}$ of n sorted keys, with a search probability p_{i} for each key k_{i}, build a binary search tree (BST) with minimum expected search cost.
Matrix chain multiolication: Given a sequence of matrices $A_{1} A_{2} \ldots A_{n}$, with A_{i} of dimension $m_{i} \times n_{i}$ insert parenthesis to minimize the total number of scalar multiplications.

Naïve Algorithm

- For every subsequence of X, check whether it's a subsequence of Y.
- Time: $\Theta\left(n 2^{m}\right)$.
- 2^{m} subsequences of X to check.
- Each subsequence takes $\Theta(n)$ time to check: scan Y for first letter, for second, and so on.

Optimal Substructure

Theorem

Let $Z=\left\langle z_{1}, \ldots, z_{k}\right\rangle$ be any LCS of X and Y.

1. If $x_{m}=y_{n}$, then $z_{k}=x_{m}=y_{n}$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}.
2. If $x_{m} \neq y_{n}$, then either $z_{k} \neq x_{m}$ and Z is an LCS of X_{m-1} and Y.
3. \quad or $z_{k} \neq y_{n}$ and Z is an LCS of X and Y_{n-1}.
prefix $X_{i}=\left\langle x_{1}, \ldots, x_{i}\right\rangle$ is the first i letters of X.
This says what any longest common subsequence must look like; do you believe it?

Optimal Substructure

Theorem

Let $Z=\left\langle z_{1}, \ldots, z_{k}\right\rangle$ be any LCS of X and Y.

1. If $x_{m}=y_{n}$, then $z_{k}=x_{m}=y_{n}$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}.
2. If $x_{m} \neq y_{n}$, then either $z_{k} \neq x_{m}$ and Z is an LCS of X_{m-1} and Y.
3. or $z_{k} \neq y_{n}$ and Z is an LCS of X and Y_{n-1}.

$$
\text { (case 1: } x_{m}=y_{n} \text {) }
$$

Any sequence Z ' that does not end in $x_{m}=y_{n}$ can be made longer by adding $x_{m}=y_{n}$ to the end. Therefore,
(1) longest common subsequence (LCS) Z must end in $x_{m}=y_{n}$.
(2) Z_{k-1} is a common subsequence of X_{m-1} and Y_{n-1}, and
(3) there is no longer CS of X_{m-1} and Y_{n-1}, or Z would not be an LCS.

Optimal Substructure

Theorem

Let $Z=\left\langle z_{1}, \ldots, z_{k}\right\rangle$ be any LCS of X and Y.

1. If $x_{m}=y_{n}$, then $z_{k}=x_{m}=y_{n}$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}.
2. If $x_{m} \neq y_{n}$, then either $z_{k} \neq x_{m}$ and Z is an LCS of X_{m-1} and Y.
3. or $z_{k} \neq y_{n}$ and Z is an LCS of X and Y_{n-1}.
(case 2: $x_{m} \neq y_{n}$, and $z_{k} \neq x_{m}$)
Since Z does not end in x_{m},
(1) Z is a common subsequence of X_{m-1} and Y, and
(2) there is no longer CS of X_{m-1} and Y, or Z would not be an LCS.

Recursive Solution

- Define
- We want c[m,n].

$$
c[i, j]= \begin{cases}0 & \text { if } i=0 \text { or } j=0, \\ c[i-1, j-1]+1 & \text { if } i, j>0 \text { and } x_{i}=y_{j}, \\ \max (c[i-1, j], c[i, j-1]) & \text { if } i, j>0 \text { and } x_{i} \neq y_{j} .\end{cases}
$$

This gives a recursive algorithm and solves the problem. But does it solve it well?

Recursive Solution

$c[\alpha, \beta]= \begin{cases}0 & \text { if } \alpha \text { empty or } \beta \text { empty }, \\ c[\text { prefix } \alpha, \text { prefix } \beta]+1 & \text { if } \operatorname{end}(\alpha)=\operatorname{end}(\beta), \\ \max (c[\text { prefix } \alpha, \beta], c[\alpha, \text { prefix } \beta]) & \text { if } \operatorname{end}(\alpha) \neq \operatorname{end}(\beta) .\end{cases}$

c [springtime, printing]

c [springtim, printing] c [springtime, printin]
[springti, printing] [springtim, printin] [springt \&, printin] [springtime, printi] [springt, printing] [springti, printin] [springtim, printi] [springtime, print]

Recursive Solution

$$
c[\alpha, \beta]= \begin{cases}0 & \text { if } \alpha \text { empty or } \beta \text { empty }, \\ c[\text { prefix } \alpha, \text { prefix } \beta]+1 & \text { if } \operatorname{end}(\alpha)=\operatorname{end}(\beta) \\ \max (c[\text { prefix } \alpha, \beta], c[\alpha, \text { prefix } \beta]) & \text { if } \operatorname{end}(\alpha) \neq \operatorname{end}(\beta)\end{cases}
$$

-Keep track of $c[\alpha, \beta]$ in a table of $n m$ entries:
-top/down
-bottom/up

Computing the length of an LCS

LCS-LENGTH (X, η

1. $m \leftarrow$ length $[X]$
2. $n \leftarrow$ length $[Y]$
3. for $i \leftarrow 1$ to m
4. do $c[i, 0] \leftarrow 0$
5. for $j \leftarrow 0$ to n
6. do $c[0, j] \leftarrow 0$
7. for $i \leftarrow 1$ to m
8. \quad do for $j \leftarrow 1$ to n
9. do if $x_{i}=y_{j}$
10. then
11.
12.
13.
14.
15.
16.
17. return c and b
$b[i, j]$ points to table entry whose subproblem we used in solving LCS of X_{i} and Y_{j}.
$c[m, n]$ contains the length of an LCS of X and Y.

$$
\text { else } c[i, j] \leftarrow c[i, j-1]
$$

$$
b[i, j] \leftarrow " \leftarrow "
$$

$O(m n)$

Constructing an LCS

PRINT-LCS (b, X, i, n)

1. if $i=0$ or $j=0$
2. then return
3. if $b[i, j]=$ "
4. then PRINT-LCS $(b, X, i-1$, $j-1$)
5. print x_{i}
6. elseif $b[i, j]=$ " \uparrow "
7. then PRINT-LCS $(b, X$,

-When $b[i, j]=\backslash$, we have extended LCS by one character. So LCS $=$ entries with \backslash in them.
-Time: $O(m+n)$
