

Topics to be covered

* Dynamic Programming
* General Method
* Least Common Subsequence

Dynamic Programming

« Dynamic Programming is an algorithm design technique
{o] . often minimizing or
maximizing.

divide and conquer, DP solves problems by
combining solutions to subproblems.

. divide and conquer, subproblems are not

iIndependent.

» Subproblems may share subsubproblems,

* However, solution to one subproblem may not affect the solutions
to other subproblems of the same problem. (More on this later.)

DP reduces computation by

* Solving subproblems in a bottom-up fashion.

» Storing solution to a subproblem the first time it is solved.

 Looking up the solution when subproblem is encountered again.

Key: determine structure of optimal solutions

Comp 122, Spring 2004

Steps in Dynamic Programming

1. Characterize structure of an optimal solution.
2. Define value of optimal solution recursively.

3. Compute optimal solution values either with
caching or In a table.

4. Construct an optimal solution from computed values.
WEe'll study these with the help of examples.

Comp 122, Spring 2004

Longest Common Subsequence

Given 2 sequences, X = (Xq,...,X,) and

Y = (Yy,...,.¥n), find @ common subsequence whose length

IS maximum.

gl

A\

|/

Subseguence need not be consecutive, but must

be In order.

Comp 122, Spring 2004

Other sequence questions

: Given 2 sequences, X = (Xq,...,Xy and Y =
(Y15, Yn), What Is the minimum number of deletions,
Insertions, and changes that you must do to change one
to another?

- Given a score matrix on
amino acid pairs, s(a,b) for a,pe{A} UA,
and 2 amino acid sequences, X = (Xq,...,X,yeA™ and Y =
(Y1, Yy €AN, find the alignment with lowest score...

Comp 122, Spring 2004

More problems

Given sequence K = k; <k, <--- <k, of n
sorted keys, with a search probability p; for each key k;,
build a binary search tree (BST) with minimum expected
search cosit.

Given a sequence of matrices
A A, ... A, with A; of dimension m;xn;, insert parenthesis
to minimize the total number of scalar multiplications.

Comp 122, Spring 2004

Naive Algorithm

« For every subsequence of X, check whether it'’s a
subsequence of Y .
. o(n2M).
» 2™ subsequences of X to check.

* Each subsequence takes ©(n) time to check:
scan Y for first letter, for second, and so on.

Comp 122, Spring 2004

Optimal Substructure

Theorem

LetZ=(zq,...,7)beany LCSof Xand Y .

1. If X, =Y, thenz, =X, =y,and Z,_; Isan LCS of X, and Y ;.
2. 1f X, =Y, theneither z, # x,and Zisan LCS of X, ; and Y .

3. or z,#Yy,and Zisan LCS of Xand Y, ;.

prefix X = (Xy,...,X;) IS the first I letters of X.
This says what any longest common subsequence must look

like;
do you believe it?

Comp 122, Spring 2004

Optimal Substructure

Theorem

LetZ=(z4,...,Z)beany LCSof Xand Y.

1. If X, =Y, thenz, =x,=y,and Z,_; isan LCS of X, ; and Y,,_;.
2. If X, #Y,, then either z, = x, and Zi1san LCS of X, ; and Y .

3. or z,#Yy,and.Zisan LCS of Xand Y, _;.

(case 1: X, = Y,)

Any sequence Z’ that does not end in X, = y,, can be made longer by adding
Xm = Y, to the end. Therefore,

(1) longest common subsequence (LCS) Z must end Iin X, = Y,
(2) Z,.11s acommon subsequence of X, ; and Y4, and
(3) there is no longer CS of X, and Y,,_;, or Z would not be an LCS.

Comp 122, Spring 2004

Optimal Substructure

Theorem

LetZ=(zq,...,7)beany LCSof Xand Y .

1. If X, =Y, thenz, =x,=y,and Z,_; Isan LCS of X, and Y ;.
2. If X, # Y, then either z, = x,and Z isan LCS of X, and Y .

3. or z,#Yy,and Zisan LCS of Xand Y, ;.

(case 2: X, #VY,, and z, #X.)
Since Z does not end in X,
(1) Zis a common subsequence of X, ; and Y, and

(2) there is no longer CS of X, ; and Y, or Z would not be an
LCSH

Comp 122, Spring 2004

Recursive Solution

* Define
* We want c[m,n].

0
cli, j]]=<c[i-1, j-1]+1
max(c[i -1, j],c[i,] -1])

If 1=00r j =0,
if1,]>0and x; =y,

ifI,]>0and x; =Y.

This gives a recursive algorithm and solves the problem.

But does it solve it well?

Comp 122, Spring 2004

Recursive Solution
0 If o emptyor S empty,
Cla, B] =+ c[prefixa, prefix5]+1 If end(a) =end(p5),

max(c[prefixe, £],cla, prefix3]) if end(«) =end(f).

c[springtime, printing]

-

c[springtim, printing] c[springtime, printin]

N -

[springti, printing] [springtim, printin] [springt: ., printin] [springtime, printi]

/O i

springt, printing] [springti, printin] [springtim, printi] [springtime, print]

Comp 122, Spring 2004

Recursive Solution
0 If o emptyor S empty,
Cla, B] =+ c[prefixa, prefix5]+1 If end(a) =end(p5),

max(c[prefixe, £],cla, prefix3]) if end(«x) =end().

*Keep track of c[a,f] In a

table of nm entries:

top/down

*bottom/up

Comp 17

Computing the length of an LCS

LCS-LENGTH (X, Y)
1. m « length[X]

2. n « length[Y]
3. fori—1tom
4 doc[i,0] <0
5. forj<—0ton
S for??_cgoié]n‘]_ 0 b[i, j] points to table entry
8 doforj—1ton whose subproblem we used
9. do if x; =y In solving LCS of X;
10. thencfi,j]« c[i-1,j-1]+1 | and ;.
11. b[i,]] X~
A
ﬁj e'set'rfe",ﬂ' C%i’, JJ-]] :_C[CI’[iJ_ 1] il c[m,n] contains the length
14. bfi, j] < “” of an LCS of X and Y.
15. else cli, j] < c[i, j-1]
LE: bfi, j] « O(mn)

17.returncandb

Comp 122 Spring 2004

Constructing an LCS

PRINT-LCS (b, X, 1,])

1. fi=0o0r]=0

2. then return

3. 1f bli, jr]\= c 7

4, then PRINT-LCS(b, X, i-1,
J-1)

5. print x;

6. elseif b[i,j] ="

7. L then PRINT-LCS(b, X,

*Inigal @HésﬁﬂWﬂ:ﬂ@ X, m d]
*When b[i,]] =, we have extended LCS by one character. So

LCS = entries with™\ in them.
*Time: O(m+n)

Comp 122, Spring 2004

