

• Algorithms

• What is an Algorithm?

• Characteristics

• Complexity

The problem is stated as below.

• There are n jobs to be processed on a

machine.

• Each job i has a deadline di≥ 0 and profit pi≥0 .

• Pi is earned iff the job is completed by its

deadline.

• The job is completed if it is processed on a

machine for unit time.

• Only one machine is available for processing

jobs.

• Only one job is processed at a time on the

3

• A feasible solution is a subset of jobs J such

that each job is completed by its deadline.

• An optimal solution is a feasible solution with

maximum profit value.

 Example : Let n = 4, (p1,p2,p3,p4) =

(100,10,15,27), (d1,d2,d3,d4) = (2,1,2,1)

4

Sr.No. Feasible Processing Profit value

 Solution Sequence

(i) (1,2) (2,1) 110

(ii) (1,3) (1,3) or (3,1) 115

(iii) (1,4) (4,1) 127 is the optimal one

(iv) (2,3) (2,3) 25

(v) (3,4) (4,3) 42

(vi) (1) (1) 100

(vii) (2) (2) 10

(viii) (3) (3) 15

(ix) (4) (4) 27

5

• Consider the jobs in the non increasing order of profits

subject to the constraint that the resulting job sequence J

is a feasible solution.

• In the example considered before, the non-increasing

profit vector is

 (100 27 15 10) (2 1 2 1) p1 p4 p3 p2

d1 d4 d3 d2

6

 J = { 1} is a feasible one

 J = { 1, 4} is a feasible one with processing

 sequence (4,1)

 J = { 1, 3, 4} is not feasible

 J = { 1, 2, 4} is not feasible

 J = { 1, 4} is optimal

7

Theorem: Let J be a set of K jobs and

 = (i1,i2,….ik) be a permutation of jobs in J such that di1

≤ di2 ≤…≤ dik.

• J is a feasible solution iff the jobs in J can be processed

in the order without violating any deadly.

8

Proof:

• By definition of the feasible solution if the jobs in J can be
processed in the order without violating any deadline
then J is a feasible solution.

• So, we have only to prove that if J is a feasible one, then
 represents a possible order in which the jobs may be
processed.

9

• Suppose J is a feasible solution. Then there exists 1 =

(r1,r2,…,rk) such that

 drj j, 1 j <k

 i.e. dr1 1, dr2 2, …, drk k.

 each job requiring an unit time.

10

• = (i1,i2,…,ik) and 1 = (r1,r2,…,rk)

• Assume 1 . Then let a be the least index in which 1

and differ. i.e. a is such that ra
 ia.

• Let rb
 = ia, so b > a (because for all indices j less than a rj

= ij).

• In 1 interchange ra and rb.

11

 = (i1,i2,… ia ib ik) [rb occurs before ra

 in i1,i2,…,ik]

 1 = (r1,r2,… ra rb … rk)

 i1=r1, i2=r2,…ia-1= ra-1, ia
 rb but ia

 = rb

12

• We know di1 di2 … dia dib … dik.

• Since ia = rb, drb dra or dra drb.

• In the feasible solution dra a drb b

• So if we interchange ra and rb, the resulting permutation

11= (s1, … sk) represents an order with the least index in

which 11 and differ is incremented by one.

13

• Also the jobs in 11 may be processed without violating a

deadline.

• Continuing in this way, 1 can be transformed into

without violating any deadline.

• Hence the theorem is proved.

14

• Theorem2:The Greedy method obtains an

optimal solution to the job sequencing problem.

• Proof: Let(pi, di) 1in define any instance of the

job sequencing problem.

• Let I be the set of jobs selected by the greedy

method.

• Let J be the set of jobs in an optimal solution.

• Let us assume I≠J .

15

• If J C I then J cannot be optimal, because less number of

jobs gives less profit which is not true for optimal solution.

• Also, I C J is ruled out by the nature of the Greedy

method. (Greedy method selects jobs (i) according to

maximum profit order and (ii) All jobs that can be finished

before dead line are included).

16

• So, there exists jobs a and b such that aI, aJ,
bJ,bI.

• Let a be a highest profit job such that aI, aJ.

• It follows from the greedy method that pa pb for all jobs
bJ,bI. (If pb > pa then the Greedy method would
consider job b before job a and include it in I).

17

• Let Si and Sj be feasible schedules for job sets I and J
respectively.

• Let i be a job such that iI and iJ.

 (i.e. i is a job that belongs to the schedules generated by
the Greedy method and optimal solution).

• Let i be scheduled from t to t+1 in SI and t1to t1+1 in Sj.

18

• If t < t1, we may interchange the job scheduled in
[t1 t1+1] in SI with i; if no job is scheduled in [t1
t1+1] in SI then i is moved to that interval.

• With this, i will be scheduled at the same time in
SI and SJ.

• The resulting schedule is also feasible.

• If t1 < t, then a similar transformation may be
made in Sj.

• In this way, we can obtain schedules SI
1 and SJ

1
with the property that all the jobs common to I and
J are scheduled at the same time.

19

• Consider the interval [Ta Ta+1] in SI
1 in which the

job a is scheduled.

• Let b be the job scheduled in Sj
1 in this interval.

• As a is the highest profit job, pa pb.

• Scheduling job a from ta to ta+1 in Sj
1 and

discarding job b gives us a feasible schedule for
job set J1 = J-{b} U {a}. Clearly J1 has a profit
value no less than that of J and differs from in
one less job than does J.

20

• i.e., J1 and I differ by m-1 jobs if J and I differ from m jobs.

• By repeatedly using the transformation, J can be

transformed into I with no decrease in profit value.

• Hence I must also be optimal.

21

Procedure greedy job (D, J, n) J may be
represented by

// J is the set of n jobs to be completed// one dimensional array
J (1: K)

// by their deadlines // The deadlines are

 J {1} D (J(1)) D(J(2)) ..
D(J(K))

 for I 2 to n do To test if JU {i} is
feasible,

 If all jobs in JU{i} can be completed we insert i into J and
verify

by their deadlines D(J®) r 1 r
k+1

 then J JU{I}
end if
 repeat
 end greedy-job

22

Procedure JS(D,J,n,k)

// D(i) 1, 1 i n are the deadlines //

// the jobs are ordered such that //

// p1 p2 ……. pn //

// in the optimal solution ,D(J(i) D(J(i+1)) //

 // 1 i k //

integer D(o:n), J(o:n), i, k, n, r

D(0) J(0) 0

// J(0) is a fictious job with D(0) = 0 //

K1; J(1) 1 // job one is inserted into J //

for i 2 to do // consider jobs in non increasing order of
pi //

23

// find the position of i and check feasibility of insertion //

 r k // r and k are indices for existing job in J //

// find r such that i can be inserted after r //

while D(J(r)) > D(i) and D(i) ≠ r do

// job r can be processed after i and //

// deadline of job r is not exactly r //

 r r-1 // consider whether job r-1 can be processed
after i //

repeat

24

if D(J(r)) d(i) and D(i) > r then

// the new job i can come after existing job r; insert i into

J at position r+1 //

for I k to r+1 by –1 do

J(I+1) J(l) // shift jobs(r+1) to k right by//

//one position //

repeat

25

J(r+1)i ; k k+1

// i is inserted at position r+1 //

// and total jobs in J are increased by one //

repeat

end JS

26

• Let n be the number of jobs and s be the
number of jobs included in the solution.

• The loop between lines 4-15 (the for-loop) is
iterated (n-1)times.

• Each iteration takes O(k) where k is the
number of existing jobs.

The time needed by the algorithm is 0(sn) s
n so the worst case time is 0(n2).

 If di = n - i+1 1 i n, JS takes θ(n2) time

 D and J need θ(s) amount of space.
27

• The time of JS can be reduced from 0(n2) to 0(n) by using

SET UNION and FIND algorithms and using a better

method to determine the feasibility of a partial solution.

• If J is a feasible subset of jobs, we can determine the

processing time for each of the jobs using the following

rule.

28

• If job I has not been assigned a processing time,

then assign it to slot [-1,] where is the

largest integer r such that 1 r di and the slot

[-1,] is free.

• This rule delays the processing of jobs i as much

as possible, without need to move the existing

jobs in order to accommodate the new job.

• If there is no , the new job is not included.

29

EXAMPLE: let n = 5, (p1,--------p5) = (20,15,10,5,1) and (d1,--d5)
=

(2,2,1,3,3). Using the above rule

 J assigned slot jobs being considered action
or

Ø none 1 assigned
to [1, 2]

 {1} [1,2] 2 [0,1]

{1,2} [0,1],[1,2] 3 cannot fit reject
as [0,1] is not free

{1,2} [0,1],[1,2] 4 assign to [2,3]

{1,2,4} [0,1],[1,2],[2,3] 5 reject

 The optimal solution is {1,2,4}
30

• As there are only n jobs and each job takes one unit of
time, it is necessary to consider the time slots [i-1,i] 1
i b where b = min {n, max {di}}

• The time slots are partitioned into b sets .

• i represents the time slot [i-1,i]

 [0 1]is slot 1

 [1 2] is slot 2

• For any slot i, ni represents the largest integers such
that ni i and slot ni is free.

 If [1,2] is free
 n2=2 otherwise
 n2=1 if [0 1] is free

31

• To avoid end condition, we introduce a fictious
slot [-1, 0] which is always free.

• Two slots are in the same set iff ni= nj

• If i and j i < j are in the same set, then i, i+1,
i+2,…i are in the same set.

• Each set k of slots has a value f(k) ,f(k)=ni, for all
slots i in set k. (f(k) is the root of the tree
containing the set of slots k)

• Each set will be represented as a tree.

32

• Initially all slots are free and f(i) = i 1 i b.

• P(i) represents as a negative number the number of
nodes in the tree represented by the set with slot I.

• P(i) = -1 0 i b initially.

• If a job with deadline d is to be scheduled, we find the
root of the tree containing the slot min {n, d}.

33

EXAMPLE: For the problem n =5 (p1…p5) = (20,15,10,5,1),

(d1------d5) = (2,2,1,3,3) the trees defined by the P(i)’s are

J 1 2 3 4 5 Job considered

 -1 -1 -1 -1 -1 - 1 1,d1 = 2 [1,2] is

free

φ P(0) P(1) P(2) P(3) P(4) P(5)

1 0 1 P(1) F(1)=0 2, d1 = 2

 -2 F(1) = 1 [0,1] free

 P(0) P(2) {1,2} -3 P(1)2 F[1] = 0 reject

 0 0

34

The algorithm for fast job scheduling (FJS) is as follows

Procedure FJS (D,n,b,j,k)

// Find an optimal solution J = J(1),…,J(k) 1 k n //

// It is assumed that p1 p2 …..pn and b = min{n,
max(d(i)) //

 Integer b, D(n) ,J(n),F(O: b), P(O: b)

 for i0 to b. Do // initialize trees //

 F(i) i; P(i)-1

 repeat

K 0 // Initialize J //

35

For i 1 to n do // use greedy rules //

j FIND (min (n, D(i)) // F(j) is the nearest free

 slot if F(j) ≠ 0 //

if F(j) ≠ 0 then k k+1 ; J(k)i

 All slots are not occupied

//select job i //

L Find (F(j)-1); call union (L, j)

F(j)F(L) // j may be new root //

endif

repeat

end FJS

36

It is F(j) –1 because you need to union J with I
which

is F(j) -1.

F(i) is a value for a set of slots with l which is F(j)-1

F(k) = ni for all slots in the set k.

ni is that largest integer such that

ni i and slot ni is free

F(1)=1 [0 1]

F(2)=2 [1 2]

P(i)= is the number of nodes in the tree respectively
the

set with slot .

37

Complexity of algorithm FJS

As there are n unions and 2n finds, in the for loop the
computing time is

0(n (2n , n))

 (m, n) m n is related to Ackermal function

 (m,n)= min {z 1/A(3, 4[m/n]) > logn2}

For all practiced purposes, we may

assume log n < A(3,4) and hence

 (m,n) 3 m n

The computing time of FJS is O(n)

Additional 2n words of space for F and P are required.
38

