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The problem is stated as below. 

• There are n jobs to be processed on a 

machine. 

• Each job i has a deadline di≥ 0 and profit pi≥0 . 

• Pi is earned iff the job is completed by its 

deadline. 

• The job is completed if it is processed on a 

machine for unit time. 

• Only one machine is available for processing 

jobs. 

• Only one job is processed at a time on the 
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• A feasible solution is a subset of jobs J such 

that each job is completed by its deadline. 

• An optimal solution is a feasible solution with 

maximum profit value. 

 Example : Let n = 4, (p1,p2,p3,p4) = 

(100,10,15,27), (d1,d2,d3,d4) = (2,1,2,1) 
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Sr.No. Feasible  Processing Profit value 

  Solution  Sequence 

(i)  (1,2)  (2,1)  110 

(ii)  (1,3)  (1,3) or (3,1) 115 

(iii) (1,4)  (4,1)  127  is the optimal one 

(iv) (2,3)  (2,3)  25 

(v)  (3,4)  (4,3)  42 

(vi) (1)  (1)  100 

(vii) (2)  (2)  10 

(viii) (3)  (3)  15 

(ix) (4)  (4)  27 
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• Consider the jobs in the non increasing order of profits 

subject to the constraint that the resulting job sequence J 

is a feasible solution. 

• In the example considered before, the non-increasing 

profit vector is  

 (100   27    15    10)         (2    1    2    1)      p1  p4     p3    p2                  

d1  d4 d3   d2 
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 J = { 1} is a feasible one 

 J = { 1, 4} is a feasible one with processing   

        sequence ( 4,1) 

 J = { 1, 3, 4} is not feasible  

 J = { 1, 2, 4} is not feasible  

 J = { 1, 4} is optimal 
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Theorem: Let J be a set of K jobs and   

   = (i1,i2,….ik) be a permutation of jobs in J such that di1 

≤ di2 ≤…≤ dik. 

• J is a feasible solution iff the jobs in J can be processed 

in the order  without violating any deadly. 
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Proof:  

• By definition of the feasible solution if the jobs in J can be 
processed in the order without violating any deadline 
then J is a feasible solution.  

• So, we have only to prove that if J is a feasible one, then 
 represents a possible order in which the jobs may be 
processed. 
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• Suppose J is a feasible solution. Then there exists 1 = 

(r1,r2,…,rk) such that  

  drj  j,        1  j <k   

  i.e. dr1 1, dr2  2,  …, drk  k. 

 each job requiring an unit time. 
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•  = (i1,i2,…,ik)  and 1 = (r1,r2,…,rk)  

• Assume  1  . Then let a be the least index in which  1 

and  differ. i.e. a is such that ra
  ia. 

• Let  rb
 = ia, so b > a (because for all indices j less than a rj 

= ij).  

• In  1  interchange ra  and  rb. 
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 = (i1,i2,… ia     ib     ik )  [rb occurs before ra  

      in i1,i2,…,ik] 

 1 = (r1,r2,… ra     rb  …   rk )   

 i1=r1, i2=r2,…ia-1= ra-1, ia
  rb but ia

 = rb  
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• We know di1  di2  … dia  dib …  dik. 

• Since ia  = rb, drb  dra or dra  drb. 

• In the feasible solution dra  a  drb  b 

• So if we interchange ra and rb, the resulting permutation 

11= (s1, … sk) represents an order with the least index in 

which 11 and  differ is incremented by one. 
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• Also the jobs in 11 may be processed without violating a 

deadline. 

• Continuing in this way, 1 can be transformed into  

without violating any deadline. 

• Hence the theorem is proved. 
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• Theorem2:The Greedy method obtains an 

optimal solution to the job sequencing problem. 

• Proof: Let(pi, di) 1in define any instance of the 

job sequencing problem.  

• Let I be the set of jobs selected by the greedy 

method.  

• Let J be the set of jobs in an optimal solution. 

• Let us assume I≠J .  
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• If J C I then J cannot be optimal, because less number of 

jobs gives less profit which is not true for optimal solution.  

• Also, I C J  is ruled out by the nature of the Greedy 

method. (Greedy method selects jobs (i) according to 

maximum profit order and (ii) All jobs that can be finished 

before dead line are included).  
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• So, there exists jobs a and b such that aI, aJ, 
bJ,bI. 

• Let a be a highest profit job such that aI, aJ. 

•  It follows from the greedy method that pa  pb for all jobs 
bJ,bI. (If pb > pa then the Greedy method would 
consider job b before job a and include it in I). 
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• Let Si and Sj be feasible schedules for job sets I and J 
respectively.  

• Let i be a job such that iI and iJ.  

 (i.e. i is a job that belongs to the schedules generated by 
the Greedy method and optimal solution). 

• Let i be scheduled from t to t+1 in SI and t1to t1+1 in Sj. 
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• If t < t1, we may interchange the job scheduled in 
[t1 t1+1] in SI with i; if no job is scheduled in [t1 
t1+1] in SI then i is moved to that interval. 

• With this, i will be scheduled at the same time in 
SI and SJ. 

• The resulting  schedule is also feasible. 

• If t1 < t, then a similar transformation may be 
made in Sj.  

• In this way, we can obtain schedules SI
1 and SJ

1 
with the property that all the jobs common to I and 
J are scheduled at the same time.  
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• Consider the interval [Ta Ta+1] in SI
1 in which the 

job a is scheduled.  

• Let b be the job scheduled in Sj
1 in this interval. 

• As a is the highest profit job, pa  pb. 

• Scheduling job a from ta to ta+1 in Sj
1 and 

discarding job b gives us a feasible schedule for 
job set J1 = J-{b} U  {a}. Clearly J1 has a profit 
value no less than that of J and differs from in 
one less job than does J. 
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• i.e., J1 and I differ by m-1 jobs if J and I differ from m jobs.  

• By repeatedly using the transformation, J can be 

transformed into I with no decrease in profit value. 

• Hence I must also be optimal. 
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Procedure greedy job (D, J, n)                   J may be 
represented by  

// J is the set of n jobs to be completed//       one dimensional array 
J (1: K)  

// by their deadlines //                                    The deadlines are 

    J {1}              D (J(1))  D(J(2))  ..  
D(J(K)) 

    for I  2 to n do                                         To  test if JU {i} is 
feasible,  

  If  all jobs in JU{i} can be completed         we insert i into J and 
verify 

by their deadlines                     D(J®)  r            1  r  
k+1 

  then J  JU{I} 
end if 
    repeat 
  end greedy-job 
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Procedure JS(D,J,n,k) 

// D(i)  1, 1 i  n are the deadlines // 

// the jobs are ordered such that // 

// p1  p2  …….  pn // 

// in the optimal solution ,D(J(i)  D(J(i+1)) // 

    // 1  i  k // 

integer D(o:n), J(o:n), i, k, n, r 

D(0) J(0)  0 

// J(0) is a fictious job with D(0) = 0 // 

K1; J(1) 1   // job one is inserted into J // 

for i 2 to do // consider jobs in non increasing order of 
pi // 
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// find the position of i and check  feasibility of insertion // 

    r k   // r and k are indices for existing job in J // 

// find r such that i can be inserted after r // 

while D(J(r)) > D(i) and D(i) ≠ r do 

// job r can be processed after i and // 

// deadline of job r is not exactly r // 

    r r-1 // consider whether job r-1 can be processed 
after i // 

repeat 
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if D(J(r))  d(i) and D(i) > r then  

// the new job i can come after existing  job r;  insert i into 

J at position r+1 // 

for I  k to r+1 by –1 do  

J(I+1) J(l) // shift jobs( r+1) to k right by//  

//one position // 

repeat 
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J(r+1)i ;  k k+1 

// i is inserted at position r+1 // 

// and total jobs in J are increased by one // 

repeat 

end JS 
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• Let n be the number of jobs and s be the 
number of jobs included in the solution.  

• The loop between lines 4-15 (the for-loop) is 
iterated  (n-1)times. 

• Each iteration takes O(k) where k is the 
number of existing jobs. 

The time needed by the algorithm is 0(sn) s  
n so the worst case time is 0(n2).  

 If di = n - i+1   1  i  n, JS takes θ(n2) time  

 D and J need θ(s) amount of space. 
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• The time of JS can be reduced from 0(n2) to 0(n) by using 

SET UNION and FIND algorithms and using a better 

method to determine the feasibility  of a partial solution. 

• If J is a feasible subset of jobs, we can determine the 

processing time for each of the jobs using the following 

rule.  
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• If job I has not been  assigned a processing time, 

then assign it to slot [ -1, ] where  is the 

largest integer r such that 1  r  di and the slot 

[ -1, ] is free. 

• This rule delays the processing of jobs i as much 

as possible, without need to move the existing 

jobs in order to accommodate the new job.  

• If there is no , the new job is not included. 
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EXAMPLE: let n = 5, (p1,--------p5) = (20,15,10,5,1) and (d1,--d5) 
=  

(2,2,1,3,3). Using the above rule  

 J            assigned slot               jobs being considered     action 
or 

Ø                none                           1                              assigned 
to [1, 2]    

 {1}              [ 1,2]                        2                              [0,1] 

{1,2}            [0,1],[1,2]                3                       cannot fit reject 
as                   [0,1] is not free 

{1,2}            [0,1],[1,2]                4                       assign to [2,3] 

{1,2,4}         [0,1],[1,2],[2,3]       5                        reject 

 

   The optimal solution is {1,2,4} 
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• As there are only n jobs and each job takes one unit of 
time, it is necessary to consider the time slots [i-1,i] 1  
i  b where b = min {n, max {di}} 

• The time slots are partitioned into b sets . 

• i represents the time slot [i-1,i]   

   [0 1]is slot 1  

   [1 2] is slot 2 

• For any slot i, ni represents the largest integers such 
that ni  i  and slot ni is free. 

   If [1,2] is free                                              
   n2=2 otherwise                                                
   n2=1 if [0 1] is free 
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• To avoid end condition, we introduce a fictious  
slot [-1, 0] which is  always free. 

• Two slots are in the same set iff  ni= nj 

• If  i and j  i < j are in the same set, then i, i+1, 
i+2,…i are in the same set. 

• Each set k of  slots has a value f(k) ,f(k)=ni, for all 
slots i in set k. (f(k) is the root of the tree 
containing the set of slots k) 

• Each set will be represented as a tree. 
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• Initially all slots are free and f(i) = i 1  i  b.  

• P(i) represents as a negative number  the number of 
nodes in the tree represented by the set with slot I. 

• P(i) = -1    0  i  b  initially. 

• If  a job with deadline d is to be scheduled, we find the 
root of the tree containing the slot min {n, d}. 
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EXAMPLE: For the problem n =5 (p1…p5) = (20,15,10,5,1),  

(d1------d5) = (2,2,1,3,3) the trees defined by the P(i)’s are  

J  1 2 3 4         5            Job considered  

  -1         -1         -1        -1           -1         - 1            1,d1 = 2  [1,2] is 

free 

φ  P(0)     P(1)    P(2)     P(3)       P(4)      P(5) 

1        0      1         P(1)                               F(1)=0       2, d1 = 2  

      -2                 F(1) = 1 [0,1] free

  

     P(0)               P(2)              {1,2}     -3  P(1)2         F[1] = 0 reject 

 

                                                         0        0  
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The algorithm for fast job scheduling (FJS) is as follows  

Procedure FJS (D,n,b,j,k) 

// Find an optimal solution J = J(1),…,J(k)    1  k  n // 

// It is assumed that  p1  p2   …..pn and  b = min{n, 
max(d(i)) // 

    Integer b, D(n) ,J(n),F(O: b), P(O: b)  

    for i0 to b. Do  // initialize trees // 

 F(i) i; P(i)-1 

 repeat 

K 0 // Initialize J // 
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For i 1 to n do // use greedy rules // 

j  FIND (min (n, D(i)) // F(j) is the nearest free  

    slot if F(j) ≠ 0 // 

if F(j) ≠ 0 then k k+1 ; J(k)i  

  All slots are not occupied 

//select job i // 

L  Find (F(j)-1); call union (L, j) 

F(j)F(L) // j may be new root // 

endif 

repeat 

end FJS 
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It is F(j) –1 because you need to  union J with I 
which 

is F(j) -1. 

F(i) is a value for a set of slots with l which is F(j)-1 

F(k) = ni for all slots in the set k.  

ni is that largest integer  such that  

ni   i and slot ni is free 

F(1)=1    [0 1] 

F(2)=2    [1 2] 

P(i)= is the number of nodes in the tree respectively 
the  

set with slot . 
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Complexity of algorithm FJS 

As there are n unions and 2n finds, in the for loop the 
computing time is 

0(n (2n , n)) 

 (m, n)   m  n is related to Ackermal function  

 (m,n)= min {z  1/A(3, 4[m/n]) > logn2} 

For all practiced purposes, we may 

assume log n < A(3,4) and hence  

 (m,n)  3   m  n 

The computing time of FJS is O(n)  

Additional 2n words of space for F and P are required. 
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