

Topics to be covered

OB SEQUENCING WITH
DEADLINES

The problem is stated as below.

There are n jobs to be process
machine.

Each job | has a deadline d.20 and pr

Pi Is earned Iiff the job Is comple
deadline.

The job Is completed if it is proc
machine for unit time.

Only one machine Is availab

EQUENCING Wi
ontd..)

A feasible solution is a subset 0
that each job is completed by its de

An optimal solution is a feasible s
maximum profit value.

05,P3,04) =

value

15
e optimal one

EDY ALGORITHM T
PTIMAL SOLUTION

Consider the jobs in the non increasing
subject to the constraint that the resulting |
IS a feasible solution.

In the example considered before, the n
profit vector is

(100 27 15 10) 2 1 2 1)
d, d, d, d,

P. P

TIMAL SOLUTION (C

EDY ALGORITHM T
PTIMAL SOLUTION (Cont

Theorem: Let J be a set of K jobs and
o = (Iy,l,,....I,) be a permutation of jobs in J
< di, <...<di,.

J is a feasible solution iff the jobs in J can b
In the order o without violating any deadly.

Proof:

REEDY ALGORITHM TO OBTAIN AN
OPTIMAL SOLUTION (Contd.

By definition of the feasible solution if the jok
processed Iin the order without violating
then J is a feasible solution.

So, we have only to prove that if J is a feasibl
o represents a possible order in which the |c
processed.

DY ALGORITHM
TIMAL SOLUTION (Co

ere exists
(ry,rs,...,r) such that

dy =], 1<j<k
l.e.d,>1,d,>2, ...,d, >k
each job requiring an unit time.

DY ALGORITHM
PTIMAL SOLUTION (Con

O (PP ol=(r,r,...,n)
Assume ¢ 1 # 5. Then let a be the least In
and o differ. I.e. ais such that r_ # I..

Let r,=1, SO b > a (because for all indices |
]

Inc ! interchange r, and r,,

DY ALGORITHM
TIMAL SOLUTION (Con

o= (Iplp,..a 1y 1y 1) [r, occurs befor
N ig,is,...,l

&L= (Tl Py Ty Ti)
170, =, g = T L Z rpbut i, =1y

ulting permutation
the least index In
/ one.

13

DY ALGORITHM
PTIMAL SOLUTION (Con

ol may be processed w
deadline.

Continuing in this way, o' can be trans
without violating any deadline.

Hence the theorem is proved.

REEDY ALGORITHM TO OBTAIN AN
OPTIMAL SOLUTION (Contd..)

Theorem2:The Greedy method
optimal solution to the job sequencing |

Proof. Let(p;, d) 1<i<n define any insta
Jjob sequencing problem.

_et | be the set of jobs selected by t
method.

Let J be the set of jobs in an optimal sc
Let us assume I#J .

REEDY ALGORITHM TO OBTAIN AN
OPTIMAL SOLUTION (Contd..

If J C | then J cannot be optimal, because le
jobs gives less profit which is not true for opt

Also, | C J is ruled out by the nature of the G
method. (Greedy method selects jobs (i) acco
maximum profit order and (ii) All jobs that can |
before dead line are included).

EDY ALGORITHM T
PTIMAL SOLUTION (Cont

So, there exists jobs a and b such that a
bed,bel.

Let a be a highest profit job such that a<l, a

It follows from the greedy method that p, =
bed,bel. (If p, > p, then the Greedy method
consider job b before job a and include it in I)

EDY ALGORITHM T
PTIMAL SOLUTION (Cont

Let S; and S; be feasible schedules for |
respectively.

Let | be a job such that iel and 1eJ.

(l.e. 1 Is a job that belongs to the schedules
the Greedy method and optimal solution).

Let i be scheduled from tto t+1 in S; and t'to

If t < t!, we may interchange the job scheduled in
[t t1+1] iIn S, with i; if no job is scheduled in [t!
t'+1]in S then i is moved to that interval.

With this, | will be scheduled at the same time In
S, and SJ.
The resulting schedule is also feasible.

If t* < t, then a similar transformation may be
made in S;.

In this Way we can obtain schedules S/! and St
with the property that all the jobs

19

REEDY ALGORITHM TO OBTAIN AN
OPTIMAL SOLUTION (Contd..

Consider the interval [T, T,+1] in S;* |
job a Is scheduled.

Let b be the job scheduled in S;* in this i
As a is the highest profit job, p, = p,.

Scheduling job a from t, to t.+1 in
discarding job b gives us a feasible sc
job set J! = J-{b} U {a}. Clearly J* h&
value no less than that of J and diffe
one less job than does J.

DY ALGORITHM
PTIMAL SOLUTION (Con

J and | differ by m-1 jobs if J and | d

By repeatedly using the transformation, J c
transformed into | with no decrease in profit

Hence | must also be optimal.

GREEDY ALGORITHM FOR JOB
SEQUENSING WITH DEADLINE

Procedure greedy job (D, J, n) J may be
represented by

// :]] i(slt_hlg)set of n jobs to be completed// one dimensional array

Il by their deadlines // The deadlines are
J <l D (J(1)) D(U(2)
D(J(K)k
forl € 2tondo To testif JU {i} Iis
feasible,
If all jobs in JU{i} can be completed we Insert | into J and
verify
by their deadlines D®) r 1L =M
K+1
then J < JU{l}
end if
repeat .

GREEDY ALGORITHM FOR
SEQUENCING UNIT TIME JOBS

Procedure JS(D,J,n,k)

[/ D(l) > 1, 1< 1< n are the deadlines //

// the jobs are ordered such that //

NG = (0, = e A >p. [/

// In the optimal solution ,D(J(1) > D(J(i+1)) //

II1<i<k//

integer D(o:n), J(o:n), I, k, n, r

D(0) <J(0) € 0

// 3(0) is a fictious job with D(0) =0 //

K&1;, J(1) €1 //job one is inserted into J //

for i /?2 to do // consider jobs in non increasing order of
o]

23

GREEDY ALGORITHM FOR
SEQUENCING UNIT TIME JOBS

(Contd..)

// find the position of | and check feasibility of insertion //
r< k //rand k are indices for existing job in J//

// find r such that | can be inserted after r //

while D(J(r)) > D(i) and D(i) # r do

// job r can be processed after i and //

// deadline of job r is not exactly r //

r< r-1 // consider whether job r-1 can be processed
afteri//

repeat

24

GREEDY ALGORITHM FOR
SEQUENCING UNIT TIME JOBS
(Contd..)

If D(J(r)) = d(i) and D(i) > r then

// the new job | can come after existing job r; insertiinto
J at position r+1 //

for| € ktor+1 by -1 do

J(I+1)< J(I) // shift jobs(r+1) to k right by//

//one position //

repeat

25

GREEDY ALGORITHM FOR

SEQUENCING UNIT TIME JOBS

(Contd..)
J(r+1)<i; k €k+1

/[11s Inserted at position r+1 //

/[and total jobs in J are increased by one //
repeat

end JS

26

COMPLEXITY ANALYSIS OF JS
ALGORITHM

* Let n be the number of jobs and s be the
number of jobs included in the solution.

* The loop between lines 4-15 (the for-loop) Is
iterated (n-1)times.

« Each iteration takes O(k) where k is the
number of existing jobs.

-. The time needed by the algorithm is O(sn) s <
n so the worst case time is 0(n?).

Ifd =n-i+1 1<i<n,JS takes 6(n?) time
D and J need B(s) amount of space.

27

A FASTER IMPLEMENTATION OF
JS

» The time of JS can be reduced from 0(n?) to O(n) by using
SET UNION and FIND algorithms and using a better
method to determine the feasibility of a partial solution.

* If J Is a feasible subset of jobs, we can determine the
processing time for each of the jobs using the following
rule.

28

A FASTER IMPLEMENTATION OF JS
(Contd..)

* If job | has not been assigned a processing time,
then assign it to slot [a -1, a] where a Is the
largest integer r such that 1 < r < d, and the slot
[a -1, a] is free.

* This rule delays the processing of jobs | as much
as possible, without need to move the existing
jobs In order to accommodate the new job.

* If there Is no a, the new job is not included.

29

A FASTER IMPLEMENTATION OF JS
(Contd..)

EXAMPLE: letn =5, (py,-------- Ps) = (20,15,10,5,1) and (d,,--d;)

(2,2,1,3,3). Using the above rule

J assigned slot jobs being considered action
or

%) none 1 assigned
to [1, 2]

{1} [1,2] 2 [0,1]

{1,2} 0,1],[1,2] 3 cannot fit reject
as [0,1] is not free

{1,2} 0,1],[1,2] 4 assign to [2,3]

{1,2,4} 0,1],[1,2],[2,3] 5 reject

The optimal solution is {1,2,4}

30

A FASTER IMPLEMENTATION OF JS
(Contd..)

As there are only n jobs and each job takes one unit of
time, It IS necessary to consider the time slots [i-1,i] 1 <
| < b where b = min {n, max {d;}}
The time slots are partitioned into b sets .
| represents the time slot [i-1,]

[0 1]is slot 1

[1 2] is slot 2

For any slot i, n. represents the largest integers such
that n. <1 and slot n, Is free.

If [1,2] is free
n,=2 otherwise
n,=1if [0 1] is free

31

A FASTER IMPLEMENTATION OF JS
(Contd..)

* To avoid end condition, we introduce a fictious
slot [-1, O] which is always free.

* Two slots are in the same set Iff n=n,

* If 1and] 1 <] are in the same set, then |, i+1,
1+2,...1 are in the same set.

« Each set k of slots has a value f(k) ,f(k)=n., for all
slots I In set k. (f(k) Is the root of the tree
containing the set of slots k)

« Each set will be represented as a tree.

32

A FASTER IMPLEMENTATION OF JS
(Contd..)

* |nitially all slots are free and f(i) =11 <i1<h.

* P(I) represents as a negative number the number of
nodes In the tree represented by the set with slot I.

« P)=-1 0<i<Db initally.
 If ajob with deadline d is to be scheduled, we find the
root of the tree containing the slot min {n, dj}.

33

A FASTER IMPLEMENTATION OF JS
(Contd..)

EXAMPLE: For the problem n =5 (p;...ps) = (20,15,10,5,1),

(d —————— 5) = (2 2,1,3,3) the trees defined by the P(i)’'s are
Job considered
-1 -1 -1 1,d,=2 [1,2]is
fre
: pQ Q Q8 &0

P(1) F(1)=0 2,d; =

2
O @ O F(1) = 1[0,1] free
P(0) P(2) {1,2} /«%P(l)z F[1] = O reject
0 0

34

A FASTER IMPLEMENTATION OF JS
(Contd..)

The algorithm for fast job scheduling (FJS) is as follows
Procedure FJS (D,n,b,j,k)
// Find an optimal solution J = J(1),...,d(k) 1<k<n/
/l'ltis assumed that p;=p,= p,and b= min{n,
max(d(i)) //
Integer b, D(n) ,J(n),F(O: b), P(O: b)
for 1€<0 to b. Do // initialize trees //
Fi)< i; P(I)<-1
repeat
K <0 // Initialize J //

35

A FASTER IMPLEMENTATION OF JS
(Contd..)

Fori €1 tondo// use greedy rules //
] € FIND (min (n, D(i)) // F()) is the nearest free
slot if F(j) # 0 //

if F(j) # 0 then k& k+1 ; J(k) <

All slots are not occupied
//select job 1 //
L < Find (F(j)-1); call union (L,))
F()<F(L) /) may be new root //
endif
repeat
end FJS

36

A FASTER IMPLEMENTATION OF JS
(Contd..)

It is F(j) —1 because you need to union J with |
which

Is F(j) -1.

F(i) Is a value for a set of slots with | which is F(j)-1

F(k) = n. for all slots in the set k.

n. is that largest integer such that

n.< I and slot n, Is free

~(1)=1 [0 1]

~(2)=2 [12]

P(1)=1s the number of nodes Iin the tree respectively
the 37

cont wwith it

A FASTER IMPLEMENTATION OF JS
(Contd..)

Complexity of algorithm FJS

As there are n unions and 2n finds, in the for loop the
computing time is

O(n a(2n, n))

o (M, n) m = nis related to Ackermal function

a (m,n)=min {z > 1/A(3, 4[m/n]) > logn.}

For all practiced purposes, we may

assume log n < A(3,4) and hence

oa(mMn)<3 m2=n

. The computing time of FJS is O(n)

Additional 2n words of space for F and P are required.

38

