


Topics to be covered




OB SEQUENCING WITH
DEADLINES

The problem is stated as below.

There are n jobs to be process
machine.

Each job | has a deadline d.20 and pr

Pi Is earned Iiff the job Is comple
deadline.

The job Is completed if it is proc
machine for unit time.

Only one machine Is availab
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ontd..)

A feasible solution is a subset 0
that each job is completed by its de

An optimal solution is a feasible s
maximum profit value.
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EDY ALGORITHM T
PTIMAL SOLUTION

Consider the jobs in the non increasing
subject to the constraint that the resulting |
IS a feasible solution.

In the example considered before, the n
profit vector is

(100 27 15 10) 2 1 2 1)
d, d, d, d,

P. P
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EDY ALGORITHM T
PTIMAL SOLUTION (Cont

Theorem: Let J be a set of K jobs and
o = (Iy,l,,....I,) be a permutation of jobs in J
< di, <...<di,.

J is a feasible solution iff the jobs in J can b
In the order o without violating any deadly.




Proof:

REEDY ALGORITHM TO OBTAIN AN
OPTIMAL SOLUTION (Contd.

By definition of the feasible solution if the jok
processed Iin the order without violating
then J is a feasible solution.

So, we have only to prove that if J is a feasibl
o represents a possible order in which the |c
processed.




DY ALGORITHM
TIMAL SOLUTION (Co

ere exists
(ry,rs,...,r) such that

dy =], 1<j<k
l.e.d,>1,d,>2, ...,d, >k
each job requiring an unit time.



DY ALGORITHM
PTIMAL SOLUTION (Con

O (PP ol=(r,r,...,n)
Assume ¢ 1 # 5. Then let a be the least In
and o differ. I.e. ais such that r_ # I..

Let r,=1, SO b > a (because for all indices |
]

Inc ! interchange r, and r,,




DY ALGORITHM
TIMAL SOLUTION (Con

o= (Iplp,..a 1y 1y 1) [r, occurs befor
N ig,is,...,l

&L= (Tl Py Ty Ti)
170, =, g = T L Z rpbut i, =1y




ulting permutation
the least index In
/ one.
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DY ALGORITHM
PTIMAL SOLUTION (Con

ol may be processed w
deadline.

Continuing in this way, o' can be trans
without violating any deadline.

Hence the theorem is proved.




REEDY ALGORITHM TO OBTAIN AN
OPTIMAL SOLUTION (Contd..)

Theorem2:The Greedy method
optimal solution to the job sequencing |

Proof. Let(p;, d) 1<i<n define any insta
Jjob sequencing problem.

_et | be the set of jobs selected by t
method.

Let J be the set of jobs in an optimal sc
Let us assume I#J .




REEDY ALGORITHM TO OBTAIN AN
OPTIMAL SOLUTION (Contd..

If J C | then J cannot be optimal, because le
jobs gives less profit which is not true for opt

Also, | C J is ruled out by the nature of the G
method. (Greedy method selects jobs (i) acco
maximum profit order and (ii) All jobs that can |
before dead line are included).




EDY ALGORITHM T
PTIMAL SOLUTION (Cont

So, there exists jobs a and b such that a
bed,bel.

Let a be a highest profit job such that a<l, a

It follows from the greedy method that p, =
bed,bel. (If p, > p, then the Greedy method
consider job b before job a and include it in I)




EDY ALGORITHM T
PTIMAL SOLUTION (Cont

Let S; and S; be feasible schedules for |
respectively.

Let | be a job such that iel and 1eJ.

(l.e. 1 Is a job that belongs to the schedules
the Greedy method and optimal solution).

Let i be scheduled from tto t+1 in S; and t'to




If t < t!, we may interchange the job scheduled in
[t t1+1] iIn S, with i; if no job is scheduled in [t!
t'+1]in S then i is moved to that interval.

With this, | will be scheduled at the same time In
S, and SJ.
The resulting schedule is also feasible.

If t* < t, then a similar transformation may be
made in S;.

In this Way we can obtain schedules S/! and St
with the property that all the jobs
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REEDY ALGORITHM TO OBTAIN AN
OPTIMAL SOLUTION (Contd..

Consider the interval [T, T,+1] in S;* |
job a Is scheduled.

Let b be the job scheduled in S;* in this i
As a is the highest profit job, p, = p,.

Scheduling job a from t, to t.+1 in
discarding job b gives us a feasible sc
job set J! = J-{b} U {a}. Clearly J* h&
value no less than that of J and diffe
one less job than does J.



DY ALGORITHM
PTIMAL SOLUTION (Con

J and | differ by m-1 jobs if J and | d

By repeatedly using the transformation, J c
transformed into | with no decrease in profit

Hence | must also be optimal.




GREEDY ALGORITHM FOR JOB
SEQUENSING WITH DEADLINE

Procedure greedy job (D, J, n) J may be
represented by

// :]] i(slt_hlg)set of n jobs to be completed// one dimensional array

Il by their deadlines // The deadlines are
J <l D (J(1)) D(U(2)
D(J(K)k
forl € 2tondo To testif JU {i} Iis
feasible,
If all jobs in JU{i} can be completed we Insert | into J and
verify
by their deadlines D®) r 1L =M
K+1
then J < JU{l}
end if
repeat .




GREEDY ALGORITHM FOR
SEQUENCING UNIT TIME JOBS

Procedure JS(D,J,n,k)

[/ D(l) > 1, 1< 1< n are the deadlines //

// the jobs are ordered such that //

NG = (0, = e A >p. [/

// In the optimal solution ,D(J(1) > D(J(i+1)) //

II1<i<k//

integer D(o:n), J(o:n), I, k, n, r

D(0) <J(0) € 0

// 3(0) is a fictious job with D(0) =0 //

K&1;, J(1) €1 //job one is inserted into J //

for i /?2 to do // consider jobs in non increasing order of
o]
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GREEDY ALGORITHM FOR
SEQUENCING UNIT TIME JOBS

(Contd..)

// find the position of | and check feasibility of insertion //
r< k //rand k are indices for existing job in J//

// find r such that | can be inserted after r //

while D(J(r)) > D(i) and D(i) # r do

// job r can be processed after i and //

// deadline of job r is not exactly r //

r< r-1 // consider whether job r-1 can be processed
afteri//

repeat
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GREEDY ALGORITHM FOR
SEQUENCING UNIT TIME JOBS
(Contd..)

If D(J(r)) = d(i) and D(i) > r then

// the new job | can come after existing job r; insertiinto
J at position r+1 //

for| € ktor+1 by -1 do

J(I+1)< J(I) // shift jobs( r+1) to k right by//

//one position //

repeat
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GREEDY ALGORITHM FOR

SEQUENCING UNIT TIME JOBS

(Contd..)
J(r+1)<i; k €k+1

/[ 11s Inserted at position r+1 //

/[ and total jobs in J are increased by one //
repeat

end JS
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COMPLEXITY ANALYSIS OF JS
ALGORITHM

* Let n be the number of jobs and s be the
number of jobs included in the solution.

* The loop between lines 4-15 (the for-loop) Is
iterated (n-1)times.

« Each iteration takes O(k) where k is the
number of existing jobs.

-. The time needed by the algorithm is O(sn) s <
n so the worst case time is 0(n?).

Ifd =n-i+1 1<i<n,JS takes 6(n?) time
D and J need B(s) amount of space.
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A FASTER IMPLEMENTATION OF
JS

» The time of JS can be reduced from 0(n?) to O(n) by using
SET UNION and FIND algorithms and using a better
method to determine the feasibility of a partial solution.

* If J Is a feasible subset of jobs, we can determine the
processing time for each of the jobs using the following
rule.
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A FASTER IMPLEMENTATION OF JS
(Contd..)

* If job | has not been assigned a processing time,
then assign it to slot [a -1, a] where a Is the
largest integer r such that 1 < r < d, and the slot
[a -1, a] is free.

* This rule delays the processing of jobs | as much
as possible, without need to move the existing
jobs In order to accommodate the new job.

* If there Is no a, the new job is not included.
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A FASTER IMPLEMENTATION OF JS
(Contd..)

EXAMPLE: letn =5, (py,-------- Ps) = (20,15,10,5,1) and (d,,--d;)

(2,2,1,3,3). Using the above rule

J assigned slot jobs being considered action
or

%) none 1 assigned
to [1, 2]

{1} [1,2] 2 [0,1]

{1,2} 0,1],[1,2] 3 cannot fit reject
as [0,1] is not free

{1,2} 0,1],[1,2] 4 assign to [2,3]

{1,2,4} 0,1],[1,2],[2,3] 5 reject

The optimal solution is {1,2,4}
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A FASTER IMPLEMENTATION OF JS
(Contd..)

As there are only n jobs and each job takes one unit of
time, It IS necessary to consider the time slots [i-1,i] 1 <
| < b where b = min {n, max {d;}}
The time slots are partitioned into b sets .
| represents the time slot [i-1,]

[0 1]is slot 1

[1 2] is slot 2

For any slot i, n. represents the largest integers such
that n. <1 and slot n, Is free.

If [1,2] is free
n,=2 otherwise
n,=1if [0 1] is free
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A FASTER IMPLEMENTATION OF JS
(Contd..)

* To avoid end condition, we introduce a fictious
slot [-1, O] which is always free.

* Two slots are in the same set Iff n=n,

* If 1and ] 1 <] are in the same set, then |, i+1,
1+2,...1 are in the same set.

« Each set k of slots has a value f(k) ,f(k)=n., for all
slots I In set k. (f(k) Is the root of the tree
containing the set of slots k)

« Each set will be represented as a tree.
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A FASTER IMPLEMENTATION OF JS
(Contd..)

* |nitially all slots are free and f(i) =11 <i1<h.

* P(I) represents as a negative number the number of
nodes In the tree represented by the set with slot I.

« P)=-1 0<i<Db initally.
 If ajob with deadline d is to be scheduled, we find the
root of the tree containing the slot min {n, dj}.
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A FASTER IMPLEMENTATION OF JS
(Contd..)

EXAMPLE: For the problem n =5 (p;...ps) = (20,15,10,5,1),

(d —————— 5) = (2 2,1,3,3) the trees defined by the P(i)’'s are
Job considered
-1 -1 -1 1,d,=2 [1,2]is
fre
: pQ Q Q8 &0

P(1) F(1)=0 2,d; =

2
O @ O F(1) = 1[0,1] free
P(0) P(2) {1,2} /«%P(l)z F[1] = O reject
0 0
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A FASTER IMPLEMENTATION OF JS
(Contd..)

The algorithm for fast job scheduling (FJS) is as follows
Procedure FJS (D,n,b,j,k)
// Find an optimal solution J = J(1),...,d(k) 1<k<n/
/l'ltis assumed that p;=p,= p,and b= min{n,
max(d(i)) //
Integer b, D(n) ,J(n),F(O: b), P(O: b)
for 1€<0 to b. Do // initialize trees //
Fi)< i; P(I)<-1
repeat
K <0 // Initialize J //
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A FASTER IMPLEMENTATION OF JS
(Contd..)

Fori €1 tondo// use greedy rules //
] € FIND (min (n, D(i)) // F()) is the nearest free
slot if F(j) # 0 //

if F(j) # 0 then k& k+1 ; J(k) <

All slots are not occupied
//select job 1 //
L < Find (F(j)-1); call union (L, ))
F()<F(L) /) may be new root //
endif
repeat
end FJS
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A FASTER IMPLEMENTATION OF JS
(Contd..)

It is F(j) —1 because you need to union J with |
which

Is F(j) -1.

F(i) Is a value for a set of slots with | which is F(j)-1

F(k) = n. for all slots in the set k.

n. is that largest integer such that

n.< I and slot n, Is free

~(1)=1 [0 1]

~(2)=2 [12]

P(1)=1s the number of nodes Iin the tree respectively
the 37
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A FASTER IMPLEMENTATION OF JS
(Contd..)

Complexity of algorithm FJS

As there are n unions and 2n finds, in the for loop the
computing time is

O(n a(2n, n))

o (M, n) m = nis related to Ackermal function

a (m,n)=min {z > 1/A(3, 4[m/n]) > logn.}

For all practiced purposes, we may

assume log n < A(3,4) and hence

oa(mMn)<3 m2=n

. The computing time of FJS is O(n)

Additional 2n words of space for F and P are required.
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