


 

• Transitive Closure  

• Connected Components  

• Algorithms for Sparse Graphs  



• If G = (V,E) is a graph, then the transitive closure of G is 

defined as the graph G* = (V,E*), where E* = {(vi,vj) | 

there is a path from vi to vj in G}  

• The connectivity matrix of G is a matrix A* = (ai
*
,j) such 

that ai
*
,j = 1 if there is a path from vi to vj or i = j, and ai

*
,j = 

∞ otherwise.  

• To compute A* we assign a weight of 1 to each edge of E 

and use any of the all-pairs shortest paths algorithms on 

this weighted graph.  

 



• The connected components of an undirected graph are 

the equivalence classes of vertices under the ``is 

reachable from'' relation.  

A graph with three connected components: {1,2,3,4}, 

{5,6,7}, and {8,9}.  



• Perform DFS on the graph to get a forest - eac tree in the 

forest corresponds to a separate connected component.  

Part (b) is a depth-first forest obtained from depth-first 

traversal of the graph in part (a). Each of these trees is a 

connected component of the graph in part (a).  



• Partition the graph across processors and run 

independent connected component algorithms on each 

processor. At this point, we have p spanning forests.  

• In the second step, spanning forests are merged pairwise 

until only one spanning forest remains.  

 



Computing connected components in parallel. The adjacency matrix of the graph G in (a) 
is partitioned into two parts (b). Each process gets a subgraph of G ((c) and (e)). Each 
process then computes the spanning forest of the subgraph ((d) and (f)). Finally, the 

two spanning trees are merged to form the solution.  



• To merge pairs of spanning forests efficiently, the 

algorithm uses disjoint sets of edges.  

• We define the following operations on the disjoint sets:  

• find(x)  

• returns a pointer to the representative element of the set 

containing x . Each set has its own unique representative.  

• union(x, y)  

• unites the sets containing the elements x and y. The two sets are 

assumed to be disjoint prior to the operation.  

 



• For merging forest A into forest B, for each edge (u,v) of 

A, a find operation is performed to determine if the 

vertices are in the same tree of B.  

• If not, then the two trees (sets) of B containing u and v 

are united by a union operation.  

• Otherwise, no union operation is necessary.  

• Hence, merging A and B requires at most 2(n-1) find 

operations and (n-1) union operations.  

 



• The n x n adjacency matrix is partitioned into p blocks.  

• Each processor can compute its local spanning forest in 
time Θ(n2/p).  

• Merging is done by embedding a logical tree into the 

topology. There are log p merging stages, and each takes 
time Θ(n). Thus, the cost due to merging is Θ(n log p).  

• During each merging stage, spanning forests are sent 
between nearest neighbors. Recall that Θ(n) edges of the 

spanning forest are transmitted.  



• The parallel run time of the connected-component 

algorithm is  

 

 

 

 

• For a cost-optimal formulation p = O(n / log n). The 
corresponding isoefficiency is Θ(p2 log2 p).  



• A graph G = (V,E) is sparse if |E| is much smaller than 

|V|2.  

Examples of sparse graphs: (a) a linear graph, in which each vertex has two incident 

edges; (b) a grid graph, in which each vertex has four incident vertices; and (c) a 

random sparse graph. 



• Dense algorithms can be improved significantly if we 

make use of the sparseness. For example, the run time 

of Prim's minimum spanning tree algorithm can be 
reduced from Θ(n2) to Θ(|E| log n).  

• Sparse algorithms use adjacency list instead of an 

adjacency matrix.  

• Partitioning adjacency lists is more difficult for sparse 

graphs - do we balance number of vertices or edges?  

• Parallel algorithms typically make use of graph structure 

or degree information for performance.  

 



A street map (a) can be represented by a graph (b). In the graph shown 
in (b), each street intersection is a vertex and each edge is a street 
segment. The vertices of (b) are the intersections of (a) marked by 

dots.  



• A set of vertices I ⊂ V  is called independent if no pair of 
vertices in I is connected via an edge in G. An 
independent set is called maximal if by including any 
other vertex not in I, the independence property is 
violated.  

Examples of independent and maximal independent sets. 



• Simple algorithms start by MIS I to be empty, and 

assigning all vertices to a candidate set C.  

• Vertex v from C is moved into I and all vertices adjacent 

to v are removed from C.  

• This process is repeated until C is empty.  

• This process is inherently serial!  



• Parallel MIS algorithms use randimization to gain 

concurrency (Luby's algorithm for graph coloring).  

• Initially, each node is in the candidate set C. Each node 

generates a (unique) random number and communicates 

it to its neighbors.  

• If a nodes number exceeds that of all its neighbors, it 

joins set I. All of its neighbors are removed from C.  

• This process continues until C is empty.  

• On average, this algorithm converges after O(log|V|) 

such steps.  



The different augmentation steps of Luby's randomized maximal 
independent set algorithm. The numbers inside each vertex 
correspond to the random number assigned to the vertex. 



• We use three arrays, each of length n - I, which stores 

nodes in MIS, C, which stores the candidate set, and R, 

the random numbers.  

• Partition C across p processors. Each processor 

generates the corresponding values in the R array, and 

from this, computes which candidate vertices can enter 

MIS.  

• The C array is updated by deleting all the neighbors of 

vertices that entered MIS.  

• The performance of this algorithm is dependent on the 

structure of the graph.  



• Dijkstra's algorithm, modified to handle sparse graphs is 

called Johnson's algorithm.  

• The modification accounts for the fact that the 

minimization step in Dijkstra's algorithm needs to be 

performed only for those nodes adjacent to the previously 

selected nodes.  

• Johnson's algorithm uses a priority queue Q to store the 

value l[v] for each vertex v ∈ (V – VT).  

 



Johnson's sequential single-source shortest paths algorithm. 



• Maintaining strict order of Johnson's algorithm generally 

leads to a very restrictive class of parallel algorithms.  

• We need to allow exploration of multiple nodes 

concurrently. This is done by simultaneously extracting p 

nodes from the priority queue, updating the neighbors' 

cost, and augmenting the shortest path.  

• If an error is made, it can be discovered (as a shorter 

path) and the node can be reinserted with this shorter 

path.  



An example of the modified Johnson's algorithm for processing unsafe vertices 
concurrently.  



• Even if we can extract and process multiple nodes from 

the queue, the queue itself is a major bottleneck.  

• For this reason, we use multiple queues, one for each 

processor. Each processor builds its priority queue only 

using its own vertices.  

• When process Pi extracts the vertex u ∈ Vi, it sends a 

message to processes that store vertices adjacent to u.  

• Process Pj, upon receiving this message, sets the value 

of l[v] stored in its priority queue to min{l[v],l[u] + w(u,v)}. 



• If a shorter path has been discovered to node v, it is 

reinserted back into the local priority queue.  

• The algorithm terminates only when all the queues 

become empty.  

• A number of node paritioning schemes can be used to 

exploit graph structure for performance.  


