

• All-Pairs Shortest Paths

• Transitive Closure

• Connected Components

• Algorithms for Sparse Graphs

• Given a weighted graph G(V,E,w), the all-pairs shortest

paths problem is to find the shortest paths between all

pairs of vertices vi, vj ∈ V.

• A number of algorithms are known for solving this

problem.

• Consider the multiplication of the weighted adjacency

matrix with itself - except, in this case, we replace the

multiplication operation in matrix multiplication by

addition, and the addition operation by minimization.

• Notice that the product of weighted adjacency matrix with

itself returns a matrix that contains shortest paths of

length 2 between any pair of nodes.

• It follows from this argument that An contains all shortest

paths.

• An is computed by doubling powers - i.e., as A, A2, A4, A8,

and so on.

• We need log n matrix multiplications, each taking time

O(n3).

• The serial complexity of this procedure is O(n3log n).

• This algorithm is not optimal, since the best known

algorithms have complexity O(n3).

• Each of the log n matrix multiplications can be performed

in parallel.

• We can use n3/log n processors to compute each matrix-

matrix product in time log n.

• The entire process takes O(log2n) time.

• Execute n instances of the single-source shortest path

problem, one for each of the n source vertices.

• Complexity is O(n3).

• Two parallelization strategies - execute each of the n

shortest path problems on a different processor (source

partitioned), or use a parallel formulation of the shortest

path problem to increase concurrency (source parallel).

• Use n processors, each processor Pi finds the shortest

paths from vertex vi to all other vertices by executing

Dijkstra's sequential single-source shortest paths

algorithm.

• It requires no interprocess communication (provided that

the adjacency matrix is replicated at all processes).

• The parallel run time of this formulation is: Θ(n2).

• While the algorithm is cost optimal, it can only use n

processors. Therefore, the isoefficiency due to

concurrency is p3.

• In this case, each of the shortest path problems is further

executed in parallel. We can therefore use up to n2

processors.

• Given p processors (p > n), each single source shortest

path problem is executed by p/n processors.

• Using previous results, this takes time:

• For cost optimality, we have p = O(n2/log n) and the
isoefficiency is Θ((p log p)1.5).

• For any pair of vertices vi, vj ∈ V, consider all paths from

vi to vj whose intermediate vertices belong to the set

{v1,v2,…,vk}. Let pi
(
,
k
j
) (of weight di

(
,
k
j
) be the minimum-

weight path among them.

• If vertex vk is not in the shortest path from vi to vj, then

pi
(
,
k
j
) is the same as pi

(
,
k
j
-1).

• If f vk is in pi
(
,
k
j
), then we can break pi

(
,
k
j
) into two paths -

one from vi to vk and one from vk to vj . Each of these

paths uses vertices from {v1,v2,…,vk-1}.

 From our observations, the following recurrence relation

follows:

 This equation must be computed for each pair of nodes

and for k = 1, n. The serial complexity is O(n3).

Floyd's all-pairs shortest paths algorithm. This program

computes the all-pairs shortest paths of the graph G =

(V,E) with adjacency matrix A.

• Matrix D(k) is divided into p blocks of size (n / √p) x (n /
√p).

• Each processor updates its part of the matrix during each
iteration.

• To compute dl
(
,
k
k
-1) processor Pi,j must get dl

(
,
k
k
-1) and dk

(
,
k
r
-

1).

• In general, during the kth iteration, each of the √p
processes containing part of the kth row send it to the √p
- 1 processes in the same column.

• Similarly, each of the √p processes containing part of the
kth column sends it to the √p - 1 processes in the same
row.

(a) Matrix D(k) distributed by 2-D block mapping into √p x √p subblocks,

and (b) the subblock of D(k) assigned to process Pi,j.

(a) Communication patterns used in the 2-D block mapping. When computing di
(
,
k
j
),

information must be sent to the highlighted process from two other processes along
the same row and column. (b) The row and column of √p processes that contain the

kth row and column send them along process columns and rows.

Floyd's parallel formulation using the 2-D block mapping. P*,j denotes
all the processes in the jth column, and Pi,* denotes all the processes

in the ith row. The matrix D(0) is the adjacency matrix.

• During each iteration of the algorithm, the kth row and kth

column of processors perform a one-to-all broadcast

along their rows/columns.

• The size of this broadcast is n/√p elements, taking time
Θ((n log p)/ √p).

• The synchronization step takes time Θ(log p).

• The computation time is Θ(n2/p).

• The parallel run time of the 2-D block mapping

formulation of Floyd's algorithm is

• The above formulation can use O(n2 / log2 n) processors

cost-optimally.

• The isoefficiency of this formulation is Θ(p1.5 log3 p).

• This algorithm can be further improved by relaxing the

strict synchronization after each iteration.

• The synchronization step in parallel Floyd's algorithm can

be removed without affecting the correctness of the

algorithm.

• A process starts working on the kth iteration as soon as it

has computed the (k-1)th iteration and has the relevant

parts of the D(k-1) matrix.

Communication protocol followed in the pipelined 2-D block mapping formulation of
Floyd's algorithm. Assume that process 4 at time t has just computed a segment of the

kth column of the D(k-1) matrix. It sends the segment to processes 3 and 5. These
processes receive the segment at time t + 1 (where the time unit is the time it takes for
a matrix segment to travel over the communication link between adjacent processes).
Similarly, processes farther away from process 4 receive the segment later. Process 1

(at the boundary) does not forward the segment after receiving it.

• In each step, n/√p elements of the first row are sent from process Pi,j

to Pi+1,j.

• Similarly, elements of the first column are sent from process Pi,j to

process Pi,j+1.

• Each such step takes time Θ(n/√p).

• After Θ(√p) steps, process P√p ,√p gets the relevant elements of the

first row and first column in time Θ(n).

• The values of successive rows and columns follow after time Θ(n2/p)

in a pipelined mode.

• Process P√p ,√p finishes its share of the shortest path computation in
time Θ(n3/p) + Θ(n).

• When process P√p ,√p has finished the (n-1)th iteration, it sends the

relevant values of the nth row and column to the other processes.

• The overall parallel run time of this formulation is

• The pipelined formulation of Floyd's algorithm uses up to

O(n2) processes efficiently.

• The corresponding isoefficiency is Θ(p1.5).

• The performance and scalability of the all-pairs shortest
paths algorithms on various architectures with bisection
bandwidth. Similar run times apply to all cube
architectures, provided that processes are properly
mapped to the underlying processors.

