

Topics to be covered

* All-Pairs Shortest Paths

* Transitive Closure

» Connected Components

» Algorithms for Sparse Graphs

All-Pairs Shortest Paths

« Given a weighted graph G(V,E,w), the all-pairs shortest
paths problem is to find the shortest paths between all

pairs of vertices v;, v; € V.

* A number of algorithms are known for solving this
problem.

All-Pairs Shortest Paths: Matrix-
Multiplication Based Algorithm

« Consider the multiplication of the weighted adjacency
matrix with itself - except, in this case, we replace the
multiplication operation in matrix multiplication by
addition, and the addition operation by minimization.

* Notice that the product of weighted adjacency matrix with
itself returns a matrix that contains shortest paths of
length 2 between any pair of nodes.

* |t follows from this argument that A" contains all shortest
paths.

thm

Algor

~

BBy Eda g o
At Ao Ao — O~

Ao oo

™44 4

n @ o m

o
g

L
o
o
o

—

Ao g8 d
Lo 48 dd
R IR
4dd8s

4
4
4
¢
7

o0 DO
>0

el
0 2 .
oo 0

g
g
g
2
g
g
=
.

—
¢ 44
684
g 3
A4 o
? —
] <
a oy
SRR
S

oo oo 0 oo oo 2

oo oo oo oo 0
o000 00 00

|-J..f\...||

> 0o 4 13 4 3

aono 001

2 a0 3 4 00

aooooc 003 o 2 3 o

/
)

3
1
0
1

o0
1

o 0o 4 1 3 403

2 a0 3 4 ¢

oo 001

Matrix-Multiplication Based
Algorithm

« A" is computed by doubling powers - i.e., as A, A2, A%, A8,
and so on.

« We need log n matrix multiplications, each taking time
O(n3).
« The serial complexity of this procedure is O(nlog n).

» This algorithm is not optimal, since the best known
algorithms have complexity O(n3).

Matrix-Multiplication Based Algorithm:
Parallel Formulation

« Each of the log n matrix multiplications can be performed
In parallel.

« We can use n®/log n processors to compute each matrix-
matrix product in time log n.

« The entire process takes O(log?n) time.

Dijkstra's Algorithm

ource shortest path
e vertices.

Dijkstra's Algorithm: Parallel
Formulation

- Two parallelization strategies - execute each of the n
shortest path problems on a different processor (source
partitioned), or use a parallel formulation of the shortest
path problem to increase concurrency (source parallel).

Dijkstra’'s Algorithm: Source Partitioned
Formulation

» Use n processors, each processor P; finds the shortest
paths from vertex v, to all other vertices by executing
Dijkstra's sequential single-source shortest paths
algorithm.

* |t requires no interprocess communication (provided that
the adjacency matrix is replicated at all processes).

« The parallel run time of this formulation is: 0(n?).
« While the algorithm is cost optimal, it can only use n

processors. Therefore, the isoefficiency due to
concurrency is ps.

Dijkstra's Algorithm: Source Parallel
Formulation

In this case, each of the shortest path problems is further
executed in parallel. We can therefore use up to n?
processors.

Given p processors (p > n), each single source shortest
path problem is executed by p/n processors.

Using previous results, this takes time:

For cost optimality, we have p = O(n?/log n) and the
isoefficiency is O((p log p)*~):

Floyd's Algorithm

* For any pair of vertices v;, v; €V, consider all paths from
v; to v; whose intermediate vertices belong to the set
{vl,vz,.. Vit Let pil%) (of weight d (%) be the minimum-
weight path among them

* If vertex v Is not in the shortest path from v; to v;, then
p(k) is the same as p;(xD.

* If fv is in p{%), then we can break p;(¥) into two paths -
one from v; to v, and one from v, to v; . Each of these
paths uses vertices from {v,,v,,...,V, 4}.

Floyd's Algorithm

From our observations, the following recurrence relation
follows:

This equation must be computed for each pair of nodes
and for k = 1, n. The serial complexity is O(n?).

Floyd's Algorithm

procedure FLOYD_ALL_PAIRS_SP(A)
begin
D) — A;
fork .= 1ton do
for: := 1ton do
forj :=1tondo

kY e a(k=1) G(k=1) | (k=1)Y,
d; 7 := min (ﬂu’.?. ; sdiy T+ “I'A-..__-;') ;

end FLOYD_ALL PAIRS_SP

1.
2.
3.
4.
5.
6.
/.
8.

Floyd's all-pairs shortest paths algorithm. This program
computes the all-pairs shortest paths of the graph G =
(V,E) with adjacency matrix A.

Floyd's Algorithm: Parallel Formulation
Using 2-D Block Mapping

o E//Iatrix D® is divided into p blocks of size (n/Vp) x (n/
p).
« Each processor updates its part of the matrix during each
iteration.
» To compute d,‘ %) processor P;; must get d(*-" and d, (¥
1)
- In general, during the ki iteration, each of the Vp

processes containing part of the ki row send it to the Vp
- 1 processes in the same column.

- Similarly, each of the \p processes containing part of the
kth column sends it to the \p - 1 processes in the same
row.

Floyd's Algorithm: Parallel Formulation
Using 2-D Block Mapping

(a) Matrix D® distributed by 2-D block mapping into Vp x Vp subblocks,
and (b) the subblock of D® assigned to process P;;.

Floyd's Algorithm: Parallel Formulation
Using 2-D Block Mapping

k column k column

(@) Communication patterns used in the 2-D block mapping. When computing d;(¥),
information must be sent to the highlighted process from two other processes along
the same row and column. (b) The row and column of \p processes that contain the

kih row and column send them along process columns and rows.

Floyd's Algorithm: Parallel Formulation
Using 2-D Block Mapping

procedure FLOYD_2DBLOCK(D®)
begin
fork .= 1tondo
begin
each process P; ; that has a segment of the k™"
broadcasts it to the P. ; processes;

row of D—1.

(k—1).

each process P, ; that has a segment of the k™ column of D!
broadcasts |T to the P; . processes;
each process waits to receive the needed segments;

&) matrix:

edch process P; ; computes its part of the D'
end

end FLOYD_2DBLOCK

Floyd's parallel formulation using the 2-D block mapping. P.; denotes
all the processes in the j'" column, and Pi,. denotes all the processes
in the it row. The matrix DO is the adjacency matrix.

Floyd's Algorithm: Parallel Formulation
Using 2-D Block Mapping

 During each iteration of the algorithm, the ki row and k"
column of processors perform a one-to-all broadcast
along their rows/columns.

» The size of this broadcast is n/\Np elements, taking time

O((n log p)/ vp).
« The synchronization step takes time 0(log p).

- The computation time is ©(n4/p).

« The parallel run time of the 2-D block mapping
formulation of Floyd's algorithm is

computation communication

Floyd's Algorithm: Parallel Formulation
Using 2-D Block Mapping

« The above formulation can use O(n?/ log? n) processors
cost-optimally.
« The isoefficiency of this formulation is ©(p*-° log® p).

* This algorithm can be further improved by relaxing the
strict synchronization after each iteration.

Floyd's Algorithm: Speeding Things Up
by Pipelining

« The synchronization step in parallel Floyd's algorithm can
be removed without affecting the correctness of the
algorithm.

A process starts working on the ki iteration as soon as it
has computed the (k-1)" iteration and has the relevant
parts of the D1 matrix.

Floyd's Algorithm: Speeding Things Up
by Pipelining

Communication protocol followed in the pipelined 2-D block mapping formulation of
Floyd's algorithm. Assume that process 4 at time t has just computed a segment of the
kih column of the D1 matrix. It sends the segment to processes 3 and 5. These
processes receive the segment at time t + 1 (where the time unit is the time it takes for
a matrix segment to travel over the communication link between adjacent processes).
Similarly, processes farther away from process 4 receive the segment later. Process 1
(at the boundary) does not forward the segment after receiving it.

Floyd's Algorithm: Speeding Things Up
by Pipelining

In each step, n/\p elements of the first row are sent from process 5
to Pj,y -

Similarly, elements of the first column are sent from process P;; to
process P; ;.

Each such step takes time o(n/\p).

After ©(\p) steps, process Py, yp gets the relevant elements of the
first row and first column in time O(n).

The values of successive rows and columns follow after time 0(n?/p)
In a pipelined mode.

Process P, y, finishes its share of the shortest path computation in
time ©(n3/p) + o(n).

When process P, , has finished the (n-1)" iteration, it sends the
relevant values of the nt" row and column to the other processes.

Floyd's Algorithm: Speeding Things Up
by Pipelining

* The overall parallel run time of this formulation is

computation
e N communication

3 e
— | i - ¢ n
p -

* The pipelined formulation of Floyd's algorithm uses up to
O(n?) processes efficiently.

» The corresponding isoefficiency is O(p°).

All-pairs Shortest Path:
Comparison

* The performance and scalability of the all-pairs shortest
paths algorithms on various architectures with bisection
bandwidth. Similar run times apply to all cube
architectures, provided that processes are properly
mapped to the underlying processors.

Maximum Number
of Processes Corresponding Isoefficiency
for B = ©(1) Parallel Run Time Function

Dijkstra source-partitioned ©(n) O(n?) O (p*)

Dijkstra source-parallel O(n*/logn) O(nlogn) O((plogp)™®)
Floyd 1-D block O n/ ln_, n) O n? logn) O ((plogp) 3"1
Floyd 2-D block O(n?/ log? n) O(n log* n) O (p*°log” P)
Floyd pipelined 2-D block ©(n? _} O(n) O(p"?)

