


 

• All-Pairs Shortest Paths  

• Transitive Closure  

• Connected Components  

• Algorithms for Sparse Graphs  



• Given a weighted graph G(V,E,w), the all-pairs shortest 

paths problem is to find the shortest paths between all 

pairs of vertices vi, vj ∈ V.  

• A number of algorithms are known for solving this 

problem.  



• Consider the multiplication of the weighted adjacency 

matrix with itself - except, in this case, we replace the 

multiplication operation in matrix multiplication by 

addition, and the addition operation by minimization.  

• Notice that the product of weighted adjacency matrix with 

itself returns a matrix that contains shortest paths of 

length 2 between any pair of nodes.  

• It follows from this argument that An contains all shortest 

paths. 





• An is computed by doubling powers - i.e., as A, A2, A4, A8, 

and so on.  

• We need log n matrix multiplications, each taking time 

O(n3).  

• The serial complexity of this procedure is O(n3log n).  

• This algorithm is not optimal, since the best known 

algorithms have complexity O(n3).  

 



• Each of the log n matrix multiplications can be performed 

in parallel.  

• We can use n3/log n processors to compute each matrix-

matrix product in time log n.  

• The entire process takes O(log2n) time.  

 



• Execute n instances of the single-source shortest path 

problem, one for each of the n source vertices.  

• Complexity is O(n3).  

 



• Two parallelization strategies - execute each of the n 

shortest path problems on a different processor (source 

partitioned), or use a parallel formulation of the shortest 

path problem to increase concurrency (source parallel).  



• Use n processors, each processor Pi finds the shortest 

paths from vertex vi to all other vertices by executing 

Dijkstra's sequential single-source shortest paths 

algorithm.  

• It requires no interprocess communication (provided that 

the adjacency matrix is replicated at all processes).  

• The parallel run time of this formulation is: Θ(n2).  

• While the algorithm is cost optimal, it can only use n 

processors. Therefore, the isoefficiency due to 

concurrency is p3.  

 



• In this case, each of the shortest path problems is further 

executed in parallel. We can therefore use up to n2 

processors.  

• Given p processors (p > n), each single source shortest 

path problem is executed by p/n processors.  

• Using previous results, this takes time:  

 

 

 

• For cost optimality, we have p = O(n2/log n) and the 
isoefficiency is Θ((p log p)1.5).  



• For any pair of vertices vi, vj ∈ V, consider all paths from 

vi to vj whose intermediate vertices belong to the set 

{v1,v2,…,vk}. Let pi
(
,
k
j
) (of weight di

(
,
k
j
) be the minimum-

weight path among them.  

• If vertex vk is not in the shortest path from vi to vj, then 

pi
(
,
k
j
) is the same as pi

(
,
k
j
-1).  

• If f vk is in pi
(
,
k
j
), then we can break pi

(
,
k
j
) into two paths - 

one from vi to vk and one from vk to vj . Each of these 

paths uses vertices from {v1,v2,…,vk-1}.  

 



 From our observations, the following recurrence relation 

follows:  

 This equation must be computed for each pair of nodes 

and for  k = 1, n. The serial complexity is O(n3).  



Floyd's all-pairs shortest paths algorithm. This program 

computes the all-pairs shortest paths of the graph G = 

(V,E) with adjacency matrix A.  



• Matrix D(k) is divided into p blocks of size (n / √p) x (n / 
√p).  

• Each processor updates its part of the matrix during each 
iteration.  

• To compute dl
(
,
k
k
-1) processor Pi,j must get dl

(
,
k
k
-1) and dk

(
,
k
r
-

1).  

• In general, during the kth iteration, each of the √p 
processes containing part of the kth row send it to the √p  
- 1 processes in the same column.  

• Similarly, each of the √p processes containing part of the 
kth column sends it to the √p - 1 processes in the same 
row.  



(a) Matrix D(k) distributed by 2-D block mapping into √p  x √p subblocks, 

and (b) the subblock of D(k) assigned to process Pi,j.  



(a) Communication patterns used in the 2-D block mapping. When computing di
(
,
k
j
), 

information must be sent to the highlighted process from two other processes along 
the same row and column. (b) The row and column of √p processes that contain the 

kth row and column send them along process columns and rows.  



Floyd's parallel formulation using the 2-D block mapping. P*,j denotes 
all the processes in the jth column, and Pi,* denotes all the processes 

in the ith row. The matrix D(0) is the adjacency matrix.  



• During each iteration of the algorithm, the kth row and kth 

column of processors perform a one-to-all broadcast 

along their rows/columns.  

• The size of this broadcast is n/√p elements, taking time 
Θ((n log p)/ √p).  

• The synchronization step takes time Θ(log p).  

• The computation time is Θ(n2/p).  

• The parallel run time of the 2-D block mapping 

formulation of Floyd's algorithm is  



• The above formulation can use O(n2 / log2 n) processors 

cost-optimally.  

• The isoefficiency of this formulation is Θ(p1.5 log3 p).  

• This algorithm can be further improved by relaxing the 

strict synchronization after each iteration.  

 



• The synchronization step in parallel Floyd's algorithm can 

be removed without affecting the correctness of the 

algorithm.  

• A process starts working on the kth iteration as soon as it 

has computed the (k-1)th iteration and has the relevant 

parts of the D(k-1) matrix.  



Communication protocol followed in the pipelined 2-D block mapping formulation of 
Floyd's algorithm. Assume that process 4 at time t has just computed a segment of the 

kth column of the D(k-1) matrix. It sends the segment to processes 3 and 5. These 
processes receive the segment at time t + 1 (where the time unit is the time it takes for 
a matrix segment to travel over the communication link between adjacent processes). 
Similarly, processes farther away from process 4 receive the segment later. Process 1 

(at the boundary) does not forward the segment after receiving it.  



• In each step, n/√p elements of the first row are sent from process Pi,j 

to Pi+1,j.  

• Similarly, elements of the first column are sent from process Pi,j to 

process Pi,j+1.  

• Each such step takes time Θ(n/√p).  

• After Θ(√p) steps, process P√p ,√p gets the relevant elements of the 

first row and first column in time Θ(n).  

• The values of successive rows and columns follow after time Θ(n2/p) 

in a pipelined mode.  

• Process P√p ,√p finishes its share of the shortest path computation in 
time Θ(n3/p) + Θ(n).  

• When process P√p ,√p has finished the (n-1)th iteration, it sends the 

relevant values of the nth row and column to the other processes.  



• The overall parallel run time of this formulation is  

 

 

 

 

• The pipelined formulation of Floyd's algorithm uses up to 

O(n2) processes efficiently.  

• The corresponding isoefficiency is Θ(p1.5).  



• The performance and scalability of the all-pairs shortest 
paths algorithms on various architectures with   bisection 
bandwidth. Similar run times apply to all   cube 
architectures, provided that processes are properly 
mapped to the underlying processors.  


