

Topics to be covered

* Minimum Spanning Tree: Prim's Algorithm

 Single-Source Shortest Paths: Dijkstra's
Algorithm

Minimum Spanning Tree: Prim’'s
Algorithm

* Prim's algorithm for finding an MST is a greedy algorithm.

 Start by selecting an arbitrary vertex, include it into the
current MST.

« Grow the current MST by inserting into it the vertex
closest to one of the vertices already in current MST.

Minimum Spanning Tree: Prim's Algorithm

{a) Original grapgh

(b) After the first edge has
been selected

(c) After the second edge
has been selected

{d) Final minimum
spanming tree

Prim's minimum spanning tree algorithm.

Minimum Spanning Tree: Prim’'s
Algorithm

procedure PRIM_MST(V, E, w, r)
begin
= {r}
d.[| :=0;
forallv € (V — Vp)do
if edge (r, v) exists set d[v] := w(r, v);
else set d[v] := oc;
while Vi £ V do
begin
find a vertex w such that d[u] := min{d[v]|v € (V — V) };
Vi .= Vp U {u};
forallv € (V — Vr) do
dlv] := min{d[v],
endwhile
end PRIM_MST

w(u, v)};

1.
2.
3.
4.
5.
6.
/.
8.
Q.
1
1
1
1
1
1

b oN—O

Prim's sequential minimum spanning tree algorithm.

Prim's Algorithm: Parallel
Formulation

- The algorithm works in n outer iterations - it is hard to execute these
iterations concurrently.

« The inner loop is relatively easy to parallelize. Let p be the number of
processes, and let n be the number of vertices.

« The adjacency matrix is partitioned in a 1-D block fashion, with
distance vector d partitioned accordingly.

* In each step, a processor selects the locally closest node, followed
by a global reduction to select globally closest node.

 This node Is inserted into MST, and the choice broadcast to all
processors.

- Each processor updates its part of the d vector locally.

Prim's Algorithm: Parallel

Formulation

The partitioning of the distance array d and the adjacency matrix A
among p processes

Prim's Algorithm: Parallel
Formulation

The cost to select the minimum entry is O(n/p + log p).
The cost of a broadcast is O(log p).

The cost of local updation of the d vector is O(n/p).
The parallel time per iteration is O(n/p + log p).
The total parallel time is given by O(n?/p + n log p).
The corresponding isoefficiency is O(p2log?p).

Single-Source Shortest Paths

- For a weighted graph G = (V,E,w), the single-source
shortest paths problem is to find the shortest paths from
a vertex v €V to all other vertices in V.

» Dijkstra's algorithm is similar to Prim's algorithm. It
maintains a set of nodes for which the shortest paths are
Known.

* It grows this set based on the node closest to source
using one of the nodes in the current shortest path set.

Single-Source Shortest Paths: Dijkstra's
Algorithm

procedure DIJKSTRA_SINGLE_SOURCE_SP(V, E, w, s)
begin
V= {s}:
forallv € (V — V) do
if (s,v) exists set I[v] :
else set [[v] := oc;
while Vi # V do
begin
find @ ver’rex w such that l[u] := min{l[v]|v € (V — V1) };
Vp = Vpr U{u};
foroll v e (V — V) do
[v] := min{l[v], l[u] +w(u,v)}:
endwhile
end DIJKSTRA _SINGLE_SOURCE_SP

1.
2.
3.
4.
5.
6.
/.
8.
Q.
1
1
1
1
1

o — 0O

Dijkstra's sequential single-source shortest paths algorithm.

Dijkstra's Algorithm: Parallel
Formulation

« Very similar to the parallel formulation of Prim's algorithm
for minimum spanning trees.

* The weighted adjacency matrix is partitioned using the 1-
D block mapping.

« Each process selects, locally, the node closest to the
source, followed by a global reduction to select next
node.

* The node Is broadcast to all processors and the I-vector
updated.

« The parallel performance of Dijkstra's algorithm is
identical to that of Prim's algorithm.

