Course Name: Analysis and Design of Algorithms

Topics to be covered

- Recurrences

Recurrence Relations

- Equation or an inequality that characterizes a function by its values on smaller inputs.
- Substitution Method.
- Recursion-tree Method.
- Master Method.
- Recurrence relations
- Ex: Divide and Conquer.

Substitution Method

 the form of the solution, then to show itcorrect.

- Substitute guessed answer for the function when the inductive hypothesis is applied to smaller values - hence, the name.
- Works well when the solution is easy to guess.
- No general way to guess the correct solution.

Example - Exact Function

$$
\begin{array}{ll}
T(n)=1 & \text { if } n=1 \\
T(n)=2 T(n / 2)+n & \text { if } n>1
\end{array}
$$

$$
T(n)=n \lg n+n
$$

- Basis: $n=1 \Rightarrow n \lg n+n=1=T(n)$.
- Hypothesis: $T(k)=k \lg k+k$ for all $k<n$.
-Inductive Step: $T(n)=2 T(n / 2)+n$

$$
\begin{aligned}
& =2((n / 2) \lg (n / 2)+(n / 2))+n \\
& =n(\lg (n / 2))+2 n \\
& =n \lg n-n+2 n \\
& =n \lg n+n
\end{aligned}
$$

Recursion-tree Method

- Making a
is sometimes
with the substitution method.
- Use to devise good guesses.
- Recursion Trees
- Show successive expansions of recurrences using trees.
- Keep track of the time spent on the subproblems of a divide and conquer algorithm.
- Help organize the algebraic bookkeeping necessary to solve a recurrence.

Recursion Tree - Example

- Running time of Merge Sort:
$T(n)=2 T(n /$
recurrence as
- Rewrite the recurrence as

$T(n)=c$
 $T(n)=2 T(n / 2)+c n$

$c>0$: Running time for the base case and time per array element for the divide and combine steps.

Recursion Tree for Merge Sort

For the original problem, we have a cost of plus two subproblems each of size ($n / 2$) and running time $T(n / 2)$.

Each of the size $n / 2$ problems has a cost of $\mathrm{cn} / 2$ plus two subproblems, each costing $T(n / 4)$.

$T(n / 4) \quad T(n / 4) T(n / 4) \quad T(n / 4)$

Recursion Tree for Merge Sort

Continue expanding until the problem size reduces to 1 .

Recursion Tree for Merge Sort

Continue expanding until the problem size reduces to 1.

-Each level has total cost cn.
-Each time we go down one level, the number of subproblems doubles, but the cost per subproblem halves
\Rightarrow cost
-There are $\lg n+1$ levels, height is $\lg n$. (Assuming n is a power of 2.) - Can be proved by induction.
-Total cost $=$ sum of costs at each level $=(\lg n+1) c n=c n \lg n+c n=$ $\Theta(n \lg n)$.

Other Examples

- Use the recursion-tree method to determine a guess for the recurrences
- $T(n)=3 T(\lfloor n / 4\rfloor)+\Theta\left(n^{2}\right)$.
- $T(n)=T(n / 3)+T(2 n / 3)$

Recursion Trees - Caution Note

- Recursion trees
- Verify guesses using substitution method.
- A small amount of "sloppiness" can be tolerated. Why?
- If careful when drawing out a recursion tree and summing the costs,

The Master Method

- Based on the
- Cookbook" approach for solving recurrences of the form
$T(n)=a T(n / b)+f(n)$
- $a \geq 1, b>1$ are constants.
- $f(n)$ is asymptotically positive.
- n/b may not be an integer, but we ignore floors and ceilings. Why?
- Requires memorization of three cases.

The Master Theorem

Theorem 4.1

Let $a \geq 1$ and $b>1$ be constants, let $f(n)$ be a function, and Let $T(n)$ be defined on nonnegative integers by the recurrence $T(n)=a T(n / b)+f(n)$, where we can replace n / b by $\lfloor n / b\rfloor$ or $\lceil n / b\rceil$.
$T(n)$ can be bounded asymptotically in three cases:

1. If $f(n)=O\left(n^{\log , a-\varepsilon}\right)$ for some constant $\varepsilon>0$, then $T(n)=$ $\Theta\left(n^{\log _{\alpha} a}\right)$.
2. If $f(n)=\Theta\left(n^{\log _{g} a}\right)$, then $T(n)=\Theta\left(n^{\log ,} \mid \mathrm{lg} n\right)$.
3. If $f(n)=\Omega\left(n^{\log _{g} \alpha+\varepsilon}\right)$ for some constant $\varepsilon>0$, and if, for some constant $c<1$ and all sufficiently large n, we have $a \cdot f(n / b) \leq c f(n)$, then $T(n)=\Theta(f(n))$.

RECURRENCE RELATIONS EXAMPLE

EXAMPLE 1: QUICK SORT

$T(n)=2 T(n / 2)+O(n)$
$T(1)=O(1)$

- In the above case the presence of function of T on both sides of the equation signifies the presence of recurrence relation
- (SUBSTITUTION MEATHOD used) The equations are simplified to produce the final result:
......cntd

Cntd....

$$
\begin{aligned}
T(n) & =2 T(n / 2)+O(n) \\
& =2\left(2\left(n / 2^{2}\right)+(n / 2)\right)+n \\
& =2^{2} T\left(n / 2^{2}\right)+n+n \\
& =2^{2}\left(T\left(n / 2^{3}\right)+\left(n / 2^{2}\right)\right)+n+n \\
& =2^{3} T\left(n / 2^{3}\right)+n+n+n \\
& =n \log n
\end{aligned}
$$

Cntd

EXAMPLE 2: BINARY SEARCH

$T(n)=O(1)+T(n / 2)$
$T(1)=1$
Above is another example of recurrence relation and the way to solve it is by Substitution.

$$
\begin{aligned}
T(n) & =T(n / 2)+1 \\
& =T\left(n / 2^{2}\right)+1+1 \\
& =T\left(n / 2^{3}\right)+1+1+1 \\
& =\log n \\
T(n) & =O(\log n)
\end{aligned}
$$

