Course Name: Analysis and Design of Algorithms

Topics to be covered

Recurrences

Recurrence Relations

 Equation or an inequality that characterizes a function by its values on smaller inputs.

Solution Methods

- Substitution Method.
- Recursion-tree Method.
- Master Method.
- Recurrence relations arise when we analyze the running time of iterative or recursive algorithms.
 - **Ex:** Divide and Conquer.

 $T(n) = \Theta(1)$

T(n) = a T(n/b) + D(n) + C(n)

otherwise

Substitution Method

- <u>Guess</u> the form of the solution, then <u>use mathematical induction</u> to show it correct.
 - Substitute guessed answer for the function when the inductive hypothesis is applied to smaller values – hence, the name.
- Works well when the solution is easy to guess.
- No general way to guess the correct solution.

Example – Exact Function

Recurrence: T(n) = 1if n = 1T(n) = 2T(n/2) + nif n > 1

•<u>Guess:</u> $T(n) = n \lg n + n$.

Induction:

•Basis: $n = 1 \Rightarrow n \lg n + n = 1 = T(n)$. •Hypothesis: $T(k) = k \lg k + k$ for all k < n. •Inductive Step: T(n) = 2 T(n/2) + n $= 2 ((n/2)\lg(n/2) + (n/2)) + n$ $= n (\lg(n/2)) + 2n$ $= n \lg n - n + 2n$ $= n \lg n + n$

Recursion-tree Method

- Making a good guess is sometimes difficult with the substitution method.
- Use recursion trees to devise good guesses.
- Recursion Trees
 - Show successive expansions of recurrences using trees.
 - Keep track of the time spent on the subproblems of a divide and conquer algorithm.
 - Help organize the algebraic bookkeeping necessary to solve a recurrence.

Recursion Tree – Example

Running time of Merge Sort:

 $T(n) = \Theta(1) \qquad \text{if } n = 1$ $T(n) = 2T(n/2) + \Theta(n) \qquad \text{if } n > 1$

Rewrite the recurrence as

T(n) = cif n = 1T(n) = 2T(n/2) + cnif n > 1c > 0: Running time for the base case andtime per array element for the divide andcombine steps.

Recursion Tree for Merge Sort

For the original problem, we have a cost of *cn*, plus two subproblems each of size (n/2) and running time T(n/2).

T(n/2)

T(n/2)

Each of the size n/2 problems has a cost of cn/2 plus two subproblems, each costing T(n/4).

T(n/4) T(n/4)

→ cn/2

T(n/4)

cn/2

T(n/4)

Recursion Tree for Merge Sort

Continue expanding until the problem size reduces to 1.

Recursion Tree for Merge Sort

Continue expanding until the problem size reduces to 1.

•Each level has total cost *cn*. •Each time we go down one level, the number of subproblems doubles, but the cost per subproblem halves \Rightarrow cost per level remains the same. •There are $\lg n + 1$ levels, height is lg *n*. (Assuming *n* is a power of 2.) •Can be proved by induction. •Total cost = sum of costs at each level = (lg n + 1)cn = cnlgn + cn = $\Theta(n \lg n)$.

Other Examples

- Use the recursion-tree method to determine a guess for the recurrences
 - $T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2).$
 - T(n) = T(n/3) + T(2n/3) + O(n).

Recursion Trees – Caution Note

- Recursion trees only generate guesses.
 - Verify guesses using substitution method.
- A small amount of "sloppiness" can be tolerated. Why?
- If careful when drawing out a recursion tree and summing the costs, can be used as direct proof.

The Master Method

- Based on the Master theorem.
- "Cookbook" approach for solving recurrences of the form
 T(n) = aT(n/b) + f(n)
 - $a \ge 1$, b > 1 are constants.
 - *f*(*n*) is asymptotically positive.
 - n/b may not be an integer, but we ignore floors and ceilings.
 Why?
- Requires memorization of three cases.

The Master Theorem

Theorem 4.1

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and Let T(n) be defined on nonnegative integers by the recurrence T(n) = aT(n/b) + f(n), where we can replace n/b by $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$.

T(n) can be bounded asymptotically in three cases:

- 1. If $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and if, for some constant c < 1 and all sufficiently large n, we have $a \cdot f(n/b) \le c f(n)$, then $T(n) = \Theta(f(n))$.

RECURRENCE RELATIONS EXAMPLE

EXAMPLE 1: <u>QUICK SORT</u> T(n)= 2T(n/2) + O(n)T(1)= O(1)

- In the above case the presence of function of T on both sides of the equation signifies the presence of recurrence relation
- (SUBSTITUTION MEATHOD used) The equations are simplified to produce the final result:

.....cntd

Cntd....

T(n) = 2T(n/2) + O(n)= 2(2(n/2²) + (n/2)) + n = 2² T(n/2²) + n + n = 2² (T(n/2³) + (n/2²)) + n + n = 2³ T(n/2³) + <u>n + n + n</u> = *n log n* Cntd...

EXAMPLE 2: BINARY SEARCH T(n)=O(1) + T(n/2)T(1)=1Above is another example of recurrence relation and the way to solve it is by Substitution. T(n)=T(n/2) + 1 $= T(n/2^2)+1+1$ $= T(n/2^3)+1+1+1$ = logn T(n) = O(logn)