

• Divide and Conquer - Merge Sort

• Recursive in structure
• Divide the problem into sub-problems that are similar to the

original but smaller in size

• Conquer the sub-problems by solving them recursively. If

they are small enough, just solve them in a straightforward

manner.

• Combine the solutions to create a solution to the original

problem

Sorting Problem: Sort a sequence of n

elements into non-decreasing order.

• Divide: Divide the n-element sequence to be

sorted into two subsequences of n/2 elements

each

• Conquer: Sort the two subsequences

recursively using merge sort.

• Combine: Merge the two sorted

subsequences to produce the sorted answer.

18 26 32 6 43 15 9 1

18 26 32 6 43 15 9 1

18 26 32 6 43 15 9 1

26 18 6 32 15 43 1 9

18 26 32 6 43 15 9 1

18 26 32 6 43 15 9 1

18 26 32 6 15 43 1 9

 6 18 26 32 1 9 15 43

 1 6 9 15 18 26 32 43

18 26

18 26

18 26

32

32

 6

 6

32 6

18 26 32 6

43

43

15

15

43 15

 9

 9

 1

 1

 9 1

43 15 9 1

18 26 32 6 43 15 9 1

18 26 6 32

 6 26 32 18

15 43 1 9

 1 9 15 43

 1 6 9 15 18 26 32 43

Original Sequence

Sorted Sequence

INPUT: a sequence of n numbers stored in array

A

OUTPUT: an ordered sequence of n numbers
 MergeSort (A, p, r) // sort A[p..r] by divide & conquer

1 if p < r

2 then q (p+r)/2

3 MergeSort (A, p, q)

4 MergeSort (A, q+1, r)

5 Merge (A, p, q, r) // merges A[p..q] with A[q+1..r]

Initial Call: MergeSort(A, 1, n)

Merge(A, p, q, r)
1 n1 q – p + 1
2 n2 r – q
3 for i 1 to n1
4 do L[i] A[p + i – 1]
5 for j 1 to n2
6 do R[j] A[q + j]
7 L[n1+1]
8 R[n2+1]
9 i 1
10 j 1
11 for k p to r
12 do if L[i] R[j]
13 then A[k] L[i]
14 i i + 1
15 else A[k] R[j]
16 j j + 1

Sentinels, to avoid having to

check if either subarray is

fully copied at each step.

Input: Array containing

sorted subarrays A[p..q]

and A[q+1..r].

Output: Merged sorted

subarray in A[p..r].

 j

 6 8 26 32 1 9 42 43 … … A

k

 6 8 26 32 1 9 42 43

 k k k k k k k

i i i i

 i j j j j

 6 8 26 32 1 9 42 43

 1 6 8 9 26 32 42 43

 k

L R

Merge(A, p, q, r)

1 n1 q – p + 1

2 n2 r – q

3 for i 1 to n1

4 do L[i] A[p + i – 1]

5 for j 1 to n2

6 do R[j] A[q + j]

7 L[n1+1]

8 R[n2+1]

9 i 1

10 j 1

11 for k p to r

12 do if L[i] R[j]

13 then A[k] L[i]

14 i i + 1

15 else A[k] R[j]

16 j j + 1

Loop Invariant for the for loop

At the start of each iteration of the

for loop:

 Subarray A[p..k – 1]

contains the k – p smallest elements

of L and R in sorted order.

L[i] and R[j] are the smallest elements of

L and R that have not been copied back into

A.

Initialization:

Before the first iteration:

•A[p..k – 1] is empty.

•i = j = 1.

•L[1] and R[1] are the smallest

 elements of L and R not copied to A.

Merge(A, p, q, r)

1 n1 q – p + 1

2 n2 r – q

3 for i 1 to n1

4 do L[i] A[p + i – 1]

5 for j 1 to n2

6 do R[j] A[q + j]

7 L[n1+1]

8 R[n2+1]

9 i 1

10 j 1

11 for k p to r

12 do if L[i] R[j]

13 then A[k] L[i]

14 i i + 1

15 else A[k] R[j]

16 j j + 1

Maintenance:

Case 1: L[i] R[j]

•By LI, A contains p – k smallest elements

of L and R in sorted order.

•By LI, L[i] and R[j] are the smallest

elements of L and R not yet copied into A.

•Line 13 results in A containing p – k + 1

smallest elements (again in sorted order).

Incrementing i and k reestablishes the LI

for the next iteration.

Similarly for L[i] > R[j].

Termination:

•On termination, k = r + 1.

•By LI, A contains r – p + 1 smallest

 elements of L and R in sorted order.

•L and R together contain r – p + 3 elements.

 All but the two sentinels have been copied

 back into A.

• Running time T(n) of Merge Sort:

• Divide: computing the middle takes (1)

• Conquer: solving 2 subproblems takes 2T(n/2)

• Combine: merging n elements takes (n)

• Total:

T(n) = (1) if n = 1

T(n) = 2T(n/2) + (n) if n > 1

 T(n) = (n lg n)

