Course Name: Analysis and Design of Algorithms

Topics to be covered

- Divide and Conquer - Merge Sort

Divide and Conquer Recursive in structure

Divide the problem into sub-problems that are similar to the original but smaller in size

- Conquer the sub-problems by solving them recursively. If they are small enough, just solve them in a straightforward manner.
- Combine the solutions to create a solution to the original problem

An Example: Merge Sort

Sort a sequence of n
elements into non-decreasing order.

- Divide: Divide the n-element sequence to be sorted into two subsequences of $n / 2$ elements each
- Conquer: Sort the two subsequences recursively using merge sort.

Merge the two sorted subsequences to produce the sorted answer.

Merge-Sort (A, p, r)

a sequence of n numbers stored in array

MergeSort ($\boldsymbol{A}, \boldsymbol{p}, \boldsymbol{r}$) // sort $A[p . r]$ by divide \& conquer
1 if $p<r$
2 then $q \leftarrow\lfloor(p+r) / 2\rfloor$
3 MergeSort (A, p, q)
4
5 MergeSort $(A, q+1, r)$ $\operatorname{Merge}(A, p, q, r) / /$ merges $A[p . . q]$ with $A[q+1 . . r]$
$\operatorname{MergeSort}(A, 1, n)$

Procedure Merge

Merge (A, p, q, r)

$1 n_{1} \leftarrow q-p+1$
$2 n_{2} \leftarrow r-q$
$3 \quad$ for $i \leftarrow 1$ to n_{1}
do $L[1] \leftarrow A[p+i-1]$ for $j \leftarrow 1$ to n_{2}
do $R[] \leftarrow \bar{A}[q+j]$
$L\left[n_{1}+1\right] \leftarrow \infty$
$R\left[n_{2}+1\right] \leftarrow \infty$
$i \leftarrow 1$
$j \leftarrow 1$
for $k \leftarrow p$ to r^{*} do if $L[] \leq R[]$
then $A[k] \leftarrow L[1]$
Input: Array containing sorted subarrays $A[p . . q]$ and $A[q+1 . . r]$.

Output: Merged sorted subarray in $A[p . r]$.

$$
\begin{gathered}
i \leftarrow i+1 \\
\text { else } A[k] \leftarrow R[j] \\
j \leftarrow j+\uparrow
\end{gathered}
$$

, to avoid having to check if either subarray is fully copied at

Merge - Example
A

k

Correctness of Merge

```
Merge(A, p, q, r)
1 n
2 n}\mp@subsup{n}{2}{\leftarrow}\leftarrowr-
3 for i\leftarrow1 to n,
do L[]}\leftarrowA[p+i-1
for j\leftarrow1 to n}\mp@subsup{n}{2}{
    do R[]}\leftarrowA[q+j
    L[\mp@subsup{n}{1}{}+1]\leftarrow\infty
    R[\mp@subsup{n}{2}{}+1]}\leftarrow
    i\leftarrow1
    10 j\leftarrow1
11 for }k\leftarrowp\mathrm{ to }
12 do if L[] \leqR[]
13 then A[k]\leftarrowL[1]
14 i\leftarrowi+1
15 else A[k]\leftarrowR[]
16 j\leftarrowj+1
```


Loop Invariant for the for loop

Subarray $A[p . . k-1]$
contains the $k-p$ smallest elements of L and R in sorted order.
$L[i]$ and $R[j]$ are the smallest elements of L and R that have not been copied back into A.

Initialization:

$\cdot A[p . . k-1]$ is empty.
$\bullet i=j=1$.
$\cdot L[1]$ and $R[1]$ are the smallest elements of L and R not copied to A.

Correctness of Merge

$\operatorname{Merge}(A, p, q, r)$

```
1 n
2 n}\mp@subsup{n}{2}{}\leftarrowr-
3 for i\leftarrow1 to n}\mp@subsup{n}{1}{
do L[] \leftarrowA[p+i-1]
```

 for \(j \leftarrow 1\) to \(n_{2}\)
 do \(R[] \leftarrow A[q+j]\)
 \(L\left[n_{1}+1\right] \leftarrow \infty\)
 \(R\left[n_{2}+1\right] \leftarrow \infty\)
 \(i \leftarrow 1\)
 \(j \leftarrow 1\)
 for \(k \leftarrow p\) to \(r\)
 do if \(L[] \leq R[]\)
 13 then \(A[k] \leftarrow L[1]\)
 $14 \quad i \leftarrow i+1$
$15 \quad$ else $A[k] \leftarrow R[j]$
$16 \quad j \leftarrow j+1$

Maintenance:

$$
L[i] \leq R[j]
$$

-By LI, A contains $p-k$ smallest elements of L and R in sorted order.

- By LI, $L[i]$ and $R[j]$ are the smallest elements of L and R not yet copied into A. -Line 13 results in A containing $p-k+1$ smallest elements (again in sorted order). Incrementing i and k reestablishes the LI for the next iteration.

Termination:

- On termination, $k=r+1$.
- By LI, A contains $r-p+1$ smallest elements of L and R in sorted order.
- L and R together contain $r-p+3$ elements. All but the two sentinels have been copied back into A.

Analysis of Merge Sort

- Aunning time $T(n)$
- Divide: computing the middle takes
- Conquer: solving 2 subproblems takes 2T(n/2)
- Combine: merging n elements takes
- Total:
$\Rightarrow T(n)=\Theta(n \lg n)$

