
Course Name:

Analysis and Design of Algorithms

Topics to be covered

Sorting Techniques and their analysis

CIS 068

Overview

Algorithmic Description and Analysis of

• Selection Sort

• Bubble Sort

• Insertion Sort

• Merge Sort

• Quick Sort

CIS 068

Sorting - what for ?

Example:

Accessing (finding a specific value in) an

unsorted and a sorted array:

Find the name of a person being 10 years old:

10 Bart

36 Homer

8 Lisa

35 Marge

1 Maggie

CIS 068

Sorting - what for ?
Unsorted:

Worst case: try n rows => order of magnitude: O(n)

Average case: try n/2 rows => O(n)

10 Bart

36 Homer

1 Maggie

35 Marge

8 Lisa

n

CIS 068

Sorting - what for ?
Sorted: Binary Search

Worst case: try log(n) <= k <= log(n)+1 rows => O(log n)

Average case: O(log n)

(for a proof see e.g. http://www.mcs.sdsmt.edu/~ecorwin/cs251/binavg/binavg.htm)

1 Maggie

8 Lisa

10 Bart

35 Marge

36 Homer

CIS 068

Sorting - what for ?

• Sorting and accessing is faster than accessing an
unsorted dataset (if multiple (=k) queries occur):

n*log(n) + k*log(n) < k * n
(if k is big enough)

• Sorting is crucial to databases, databases are
crucial to data-management, data-management is
crucial to economy, economy is ... sorting seems
to be pretty important !

• The question is WHAT (name or age ?) and HOW
to sort.

• This lesson will answer the latter one.

CIS 068

Sorting

Quadratic Algorithms

CIS 068

Quadratic Algorithms

Selection Sort

CIS 068

Selection Sort: Example
The Brute Force Method: Selection Sort
http://www.site.uottawa.ca/~stan/csi2514/applets/sort/sort.html

http://www.site.uottawa.ca/~stan/csi2514/applets/sort/sort.html

CIS 068

Selection Sort: Algorithm

Algorithm:

For i=0 .. last -1

 find smallest element M in subarray i .. last

 if M != element at i: swap elements

Next i (this is for BASIC-freaks !)

0

last = n-1

CIS 068

Selection Sort: Analysis
Number of comparisons:

(n-1) + (n-2) + ... + 3 + 2 + 1 =

n * (n-1)/2 =

(n² - n)/2

 O(n²)

Number of exchanges (worst case):

n – 1

O(n)

Overall (worst case) O(n) + O(n²) = O(n²) (‘quadratic sort‘)

CIS 068

Quadratic Algorithms

Bubble Sort

CIS 068

Bubble Sort: Example
The Famous Method: Bubble Sort
http://www.site.uottawa.ca/~stan/csi2514/applets/sort/sort.html

http://www.site.uottawa.ca/~stan/csi2514/applets/sort/sort.html

CIS 068

Bubble Sort: Example

One Pass

Array after

 Completion

of Each Pass

CIS 068

Bubble Sort: Algorithm
for pass = 1 .. n-1

 exchange = false

 for position = 1 .. n-pass

 if element at position < element at position +1

 exchange elements

 exchange = true

 end if

 next position

 if exchange = false BREAK

next pass

CIS 068

Bubble Sort: Analysis
Number of comparisons (worst case):

 (n-1) + (n-2) + ... + 3 + 2 + 1 O(n²)

Number of comparisons (best case):

 n – 1 O(n)

Number of exchanges (worst case):

 (n-1) + (n-2) + ... + 3 + 2 + 1 O(n²)

Number of exchanges (best case):

 0 O(1)

Overall worst case: O(n²) + O(n²) = O(n²)

CIS 068

Quadratic Algorithms

Insertion Sort

CIS 068

Insertion Sort: Example
The Card Player‘s Method: Insertion Sort
http://www.site.uottawa.ca/~stan/csi2514/applets/sort/sort.html

http://www.site.uottawa.ca/~stan/csi2514/applets/sort/sort.html

CIS 068

Insertion Sort: Example

Insertion Sort:

4 passes

Pass 3

CIS 068

Insertion Sort: Algorithm
for pass = 2 .. n-1

 value = element at pass

 shift all elements > value in array 1..pass-1 one
pos. right

 place value in the array at the ‘vacant’ position

next pass

1

12

39

3

42

1

12

39

3

42

 = value

1

12

39

42

value

1

3

12

39

42

1 < value

CIS 068

Insertion Sort: Analysis
Number of comparisons (worst case):

 (n-1) + (n-2) + ... + 3 + 2 + 1 O(n²)

Number of comparisons (best case):

 n –1 O(n)

Number of exchanges (worst case):

 (n-1) + (n-2) + ... + 3 + 2 + 1 O(n²)

Number of exchanges (best case):

 0 O(1)

Overall worst case: O(n²) + O(n²) = O(n²)

CIS 068

Comparison of Quadratic Sorts

O(n²) O(1) O(n²) O(n) Insertion

Sort

O(n²) O(1) O(n²) O(n) Bubble

Sort

O(n) O(1) O(n²) O(n²) Selection

Sort

Worst Best Worst Best

Exchanges Comparisons

CIS 068

Result Quadratic Algorithms

Overall: O(n²) is not acceptable since

there are nLog(n) algorithms !

Pro Contra

Selection

Sort

If array is in

‘total disorder’

If array is

presorted

Bubble Sort If array is

presorted

If array is in

‘total disorder’

Insertion

Sort

 If array is

presorted

If array is in

‘total disorder’

CIS 068

Sorting

n*Log(n) Algorithms

CIS 068

n Log(n) Algorithms

Merge Sort

CIS 068

Merge Sort: Example
Divide and Conquer: Merge Sort
http://www.site.uottawa.ca/~stan/csi2514/applets/sort/sort.html

9 12 19 16 1 25 4 3

9 12 19 16 1 25 4 3

9 12 19 16 1 25 4 3

9 12 16 19 1 3 4 25

1 3 4 9 12 16 19 25

9 12 16 19 1 25 3 4

9 12 19 16 1 25 4 3

split

merge

http://www.site.uottawa.ca/~stan/csi2514/applets/sort/sort.html

CIS 068

Merge Sort: Algorithm
function outArray = sort(array):

 n = array.length

 if n == 1

 return array

 else

 mid = n / 2

 leftarray = array 0..mid

 rightarray = array mid+1 .. n-1

 sort leftarray

 sort rightarray

 array = merge leftarray and rightarray

 return array

 end

Cont’d: …how to merge…

RECURSION !

CIS 068

Merge Sort: Algorithm (merge)

CIS 068

Merge Sort: Analysis

• The complexity is O(n * Log(n))

• For details see textbook

• The idea is:

– We need Log(n) merging steps

– Each merging step has complexity O(n)

Problem: Merge Sort needs extra memory !

CIS 068

Merge Sort: Analysis

Memory used by recursive merge sort:

• N/2 for leftArray

• N/2 for rightArray

…on stack for each step !

Total for each subarray: N/2 + N/4 + … + 1 = N –1

• 2N bytes of memory needed if implemented the

simple way !

• Solution: don’t pass leftArray and rightArray, but

only indices defining the bounds

CIS 068

n Log(n) Algorithms

Quick Sort

CIS 068

Quick Sort: Example
Divide and Conquer II: Quick Sort
http://www.site.uottawa.ca/~stan/csi2514/applets/sort/sort.html

One step of Quick Sort (‘partitioning’)

9 12 8 16 1 25 10 3
9

12 8 16 1 25 10 3

3 12 8 16 1 25 10

3 8 16 1 25 10 12

3 1 8 16 25 10 3

3 1 8 16 25 10 3

pivot element

http://www.site.uottawa.ca/~stan/csi2514/applets/sort/sort.html

CIS 068

Quick Sort: Algorithm

CIS 068

Quick Sort: Analysis
• Exact analysis is beyond scope of this course

• The complexity is O(n * Log(n))

– Optimal case: pivot-index splits array into equal sizes

– Worst Case: size left = 0, size right = n-1 (presorted list)

• Interesting case: presorted list:

– Nothing is done, except (n+1) * n /2 comparisons

– Complexity grows up to O(n²) !

– The better the list is presorted, the worse the algorithm performs !

• The pivot-selection is crucial. In practical situations, a finely tuned

implementation of quicksort beats most sort algorithms, including sort algorithms

whose theoretical complexity is O(n log n) in the worst case.

• Comparison to Merge Sort:

– Comparable best case performance

– No extra memory needed

CIS 068

Review of Algorithms
• Selection Sort

– An algorithm which orders items by repeatedly looking through remaining
items to find the least one and moving it to a final location

• Bubble Sort

– Sort by comparing each adjacent pair of items in a list in turn, swapping the items if necessary,
and repeating the pass through the list until no swaps are done

• Insertion Sort

– Sort by repeatedly taking the next item and inserting it into the final data structure in its proper
order with respect to items already inserted.

• Merge Sort

– An algorithm which splits the items to be sorted into two groups, recursively sorts each group,
and merges them into a final, sorted sequence

• Quick Sort

– An in-place sort algorithm that uses the divide and conquer paradigm. It picks an element from
the array (the pivot), partitions the remaining elements into those greater than and less than this
pivot, and recursively sorts the partitions.

Definitions taken from www.nist.gov

CIS 068

Review

• There are thousands of different sorting
algorithms out there

• Some of them (the most important ones)
were presented

• Later we will meet another sorting algorithm
using trees

• lots of images of these slides were taken from the
textbook, for further details read there (Software Design & Data

Structures in Java by Elliot B. Koffman + Paul A. T. Wolfgang) !

