

• Asymptotic Notation

• Review of Functions & Summations

• Running time of an algorithm as a function of input size n

for large n.

• Expressed using only the highest-order term in the

expression for the exact running time.

• Instead of exact running time, say Q(n2).

• Describes behavior of function in the limit.

• Written using Asymptotic Notation.

• Q, O, W, o, w

• Defined for functions over the natural numbers.
• Ex: f(n) = Q(n2).

• Describes how f(n) grows in comparison to n2.

• Define a set of functions; in practice used to

compare two function sizes.

• The notations describe different rate-of-growth

relations between the defining function and the

defined set of functions.

Q(g(n)) = {f(n) :

 positive constants c1, c2, and n0,

such that n n0,

we have 0 c1g(n) f(n) c2g(n)

}

For function g(n), we define Q(g(n)),

big-Theta of n, as the set:

g(n) is an asymptotically tight bound for f(n).

Intuitively: Set of all functions that

have the same rate of growth as g(n).

Q(g(n)) = {f(n) :

 positive constants c1, c2, and n0,

such that n n0,

we have 0 c1g(n) f(n) c2g(n)

}

For function g(n), we define Q(g(n)),

big-Theta of n, as the set:

Technically, f(n) Q(g(n)).

Older usage, f(n) = Q(g(n)).

I’ll accept either…

f(n) and g(n) are nonnegative, for large n.

• 10n2 - 3n = Q(n2)

• What constants for n0, c1, and c2 will work?

• Make c1 a little smaller than the leading coefficient, and
c2 a little bigger.

• To compare orders of growth, look at the leading
term.

• Exercise: Prove that n2/2-3n= Q(n2)

Q(g(n)) = {f(n) : positive constants c1, c2, and n0,

such that n n0, 0 c1g(n) f(n) c2g(n)}

• Is 3n3 Q(n4) ??

• How about 22n Q(2n)??

Q(g(n)) = {f(n) : positive constants c1, c2, and n0,

such that n n0, 0 c1g(n) f(n) c2g(n)}

O(g(n)) = {f(n) :

 positive constants c and n0,

such that n n0,

we have 0 f(n) cg(n) }

For function g(n), we define O(g(n)),

big-O of n, as the set:

g(n) is an asymptotic upper bound for f(n).

Intuitively: Set of all functions

whose rate of growth is the same as

or lower than that of g(n).

f(n) = Q(g(n)) f(n) = O(g(n)).

Q(g(n)) O(g(n)).

• Any linear function an + b is in O(n2). How?

• Show that 3n3=O(n4) for appropriate c and n0.

O(g(n)) = {f(n) : positive constants c and n0,

such that n n0, we have 0 f(n) cg(n) }

g(n) is an asymptotic lower bound for f(n).

Intuitively: Set of all functions

whose rate of growth is the same

as or higher than that of g(n).

f(n) = Q(g(n)) f(n) = W(g(n)).

Q(g(n)) W(g(n)).

W(g(n)) = {f(n) :

 positive constants c and n0,

such that n n0,

we have 0 cg(n) f(n)}

For function g(n), we define W(g(n)),

big-Omega of n, as the set:

• n = W(lg n). Choose c and n0.

W(g(n)) = {f(n) : positive constants c and n0, such

that n n0, we have 0 cg(n) f(n)}

• I.e., Q(g(n)) = O(g(n)) W(g(n))

• In practice, asymptotically tight bounds are

obtained from asymptotic upper and lower

bounds.

Theorem : For any two functions g(n) and f(n),

 f(n) = Q(g(n)) iff

 f(n) = O(g(n)) and f(n) = W(g(n)).

• “Running time is O(f(n))” Worst case is
O(f(n))

• O(f(n)) bound on the worst-case running time
 O(f(n)) bound on the running time of every
input.

• Q(f(n)) bound on the worst-case running time
 Q(f(n)) bound on the running time of every
input.

• “Running time is W(f(n))” Best case is
W(f(n))

• Can still say “Worst-case running time is
W(f(n))”

• Means worst-case running time is given by some

• Insertion sort takes Q(n2) in the worst case,

so sorting (as a problem) is O(n2). Why?

• Any sort algorithm must look at each item, so

sorting is W(n).

• In fact, using (e.g.) merge sort, sorting is Q(n

lg n) in the worst case.

• Later, we will prove that we cannot hope that any

comparison sort to do better in the worst case.

• Can use asymptotic notation in equations to
replace expressions containing lower-order
terms.

• For example,
4n3 + 3n2 + 2n + 1 = 4n3 + 3n2 + Q(n)

= 4n3 + Q(n2) = Q(n3). How to interpret?

• In equations, Q(f(n)) always stands for an
anonymous function g(n) Q(f(n))

• In the example above, Q(n2) stands for
3n2 + 2n + 1.

 f(n) becomes insignificant relative to g(n) as n
approaches infinity:

 lim [f(n) / g(n)] = 0

n

g(n) is an upper bound for f(n) that is not

asymptotically tight.

Observe the difference in this definition from
previous ones. Why?

o(g(n)) = {f(n): c > 0, n0 > 0 such that
 n n0, we have 0 f(n) < cg(n)}.

For a given function g(n), the set little-o:

w(g(n)) = {f(n): c > 0, n0 > 0 such that

 n n0, we have 0 cg(n) < f(n)}.

f(n) becomes arbitrarily large relative to g(n) as n

approaches infinity:

 lim [f(n) / g(n)] = .

n

g(n) is a lower bound for f(n) that is not

asymptotically tight.

For a given function g(n), the set little-omega:

 f g a b

f (n) = O(g(n)) a b

f (n) = W(g(n)) a b

f (n) = Q(g(n)) a = b

f (n) = o(g(n)) a < b

f (n) = w (g(n)) a > b

• lim [f(n) / g(n)] = 0 f(n) o(g(n))

n

• lim [f(n) / g(n)] < f(n) O(g(n))

n

• 0 < lim [f(n) / g(n)] < f(n) Q(g(n))

n

• 0 < lim [f(n) / g(n)] f(n) W(g(n))

n

• lim [f(n) / g(n)] = f(n) w(g(n))

n

• lim [f(n) / g(n)] undefined can’t say

n

• Transitivity
f(n) = Q(g(n)) & g(n) = Q(h(n)) f(n) = Q(h(n))
f(n) = O(g(n)) & g(n) = O(h(n)) f(n) = O(h(n))
f(n) = W(g(n)) & g(n) = W(h(n)) f(n) = W(h(n))
f(n) = o (g(n)) & g(n) = o (h(n)) f(n) = o (h(n))
f(n) = w(g(n)) & g(n) = w(h(n)) f(n) = w(h(n))

• Reflexivity

 f(n) = Q(f(n))

 f(n) = O(f(n))

 f(n) = W(f(n))

• Symmetry

 f(n) = Q(g(n)) iff g(n) = Q(f(n))

• Complementarity

 f(n) = O(g(n)) iff g(n) = W(f(n))

 f(n) = o(g(n)) iff g(n) = w((f(n))

• f(n) is

• monotonically increasing if m n f(m) f(n).

• monotonically decreasing if m n f(m) f(n).

• strictly increasing if m < n f(m) < f(n).

• strictly decreasing if m > n f(m) > f(n).

• Useful Identities:

• Exponentials and polynomials

nmnm

mnnm

aaa

aa

a
a

)(

11

)(

0lim

nb

n

b

n

aon

a

n

x = logba is the

exponent for a = bx.

Natural log: ln a = logea

Binary log: lg a = log2a

lg2a = (lg a)2

lg lg a = lg (lg a)

ac

a

b

bb

c

c
b

b

n

b

ccc

a

bb

b

ca

b
a

aa

b

a
a

ana

baab

ba

loglog

log

log

1
log

log)/1(log

log

log
log

loglog

loglog)(log

• If the base of a logarithm is changed from one constant to

another, the value is altered by a constant factor.

• Ex: log10 n * log210 = log2 n.

• Base of logarithm is not an issue in asymptotic notation.

• Exponentials with different bases differ by a exponential

factor (not a constant factor).

• Ex: 2n = (2/3)n*3n.

• For a 0, b > 0, lim n (lga n / nb) = 0,

so lga n = o(nb), and nb = w(lga n)

• Prove using L’Hopital’s rule repeatedly

• lg(n!) = Q(n lg n)

• Prove using Stirling’s approximation (in the text) for

lg(n!).

Express functions in A in asymptotic notation using functions in B.

 A B

5n2 + 100n 3n2 + 2

 A Q(n2), n2 Q(B) A Q(B)

log3(n
2) log2(n

3)

logba = logca / logcb; A = 2lgn / lg3, B = 3lgn, A/B =2/(3lg3)

 nlg4 3lg n

alog b = blog a; B =3lg n=nlg 3; A/B =nlg(4/3) as n

lg2n n1/2

lim (lga n / nb) = 0 (here a = 2 and b = 1/2) A o (B)

n

A Q(B)

A Q(B)

A w(B)

A o (B)

• Why do we need summation formulas?

For computing the running times of iterative constructs

(loops). (CLRS – Appendix A)

Example: Maximum Subvector

Given an array A[1…n] of numeric values (can be positive, zero,

and negative) determine the subvector A[i…j] (1 i j n)

whose sum of elements is maximum over all subvectors.

1 -2 2 2

MaxSubvector(A, n)
 maxsum 0;
 for i 1 to n
 do for j = i to n
 sum 0
 for k i to j
 do sum += A[k]
 maxsum max(sum, maxsum)
 return maxsum

 n n j

T(n) = 1
 i=1 j=i k=i

NOTE: This is not a simplified solution. What is the final answer?

• Constant Series: For integers a and b, a b,

• Linear Series (Arithmetic Series): For n 0,

• Quadratic Series: For n 0,

n

i

nnn
ni

1

2222

6

)12)(1(
21

b

ai

ab 11

2

)1(
21

1

nn
ni

n

i

• Cubic Series: For n 0,

• Geometric Series: For real x 1,

 For |x| < 1,

n

i

nn
ni

1

22
3333

4

)1(
21

n

k

n
nk

x

x
xxxx

0

1
2

1

1
1

0 1

1

k

k

x
x

• Linear-Geometric Series: For n 0, real c 1,

• Harmonic Series: nth harmonic number, nI+,

n

i

nn
ni

c

cnccn
ncccic

1
2

21
2

)1(

)1(
2

n
Hn

1

3

1

2

1
1

n

k

On
k1

)1()ln(
1

• Telescoping Series:

• Differentiating Series: For |x| < 1,

n

k

nkk aaaa
1

01

0
2

1k

k

x

x
kx

• Approximation by integrals:

• For monotonically increasing f(n)

• For monotonically decreasing f(n)

• How?

n

m

n

mk

n

m

dxxfkfdxxf
1

1

)()()(

1

1

)()()(

n

m

n

mk

n

m

dxxfkfdxxf

• nth harmonic number

n

k

n

n
x

dx

k1

1

1

)1ln(
1

n

k

n

n
x

dx

k2 1

ln
1

n

k

n
k1

1ln
1

