


 

• Asymptotic Notation 

• Review of Functions & Summations 



• Running time of an algorithm as a function of input size n 

for large n. 

• Expressed using only the highest-order term in the 

expression for the exact running time. 

• Instead of exact running time, say Q(n2). 

• Describes behavior of function in the limit. 

• Written using Asymptotic Notation. 

 

 



•  Q, O, W, o, w 

• Defined for functions over the natural numbers. 
• Ex: f(n)  =  Q(n2). 

• Describes how f(n) grows in comparison to n2. 

• Define a set of functions; in practice used to 

compare two function sizes. 

• The notations describe different rate-of-growth 

relations between the defining function and the 

defined set of functions. 



Q(g(n)) = {f(n) :  

 positive constants c1, c2, and n0, 

such that n   n0, 

we have 0  c1g(n)   f(n)  c2g(n) 

} 

For function g(n), we define Q(g(n)), 

big-Theta of n, as the set: 

g(n) is an asymptotically tight bound for f(n). 

Intuitively: Set of all functions that 

have the same rate of growth as g(n). 



Q(g(n)) = {f(n) :  

 positive constants c1, c2, and n0, 

such that n   n0, 

we have 0  c1g(n)   f(n)  c2g(n) 

} 

For function g(n), we define Q(g(n)), 

big-Theta of n, as the set: 

Technically, f(n)  Q(g(n)). 

Older usage,  f(n) = Q(g(n)). 

I’ll accept either…  

f(n) and g(n) are nonnegative, for large n.  



• 10n2 - 3n = Q(n2) 

• What constants for n0, c1, and c2 will work? 

• Make c1 a little smaller than the leading coefficient, and 
c2 a little bigger. 

• To compare orders of growth, look at the leading 
term. 

• Exercise: Prove that n2/2-3n= Q(n2) 

 

Q(g(n)) = {f(n) :  positive constants c1, c2, and n0, 

such that n   n0,    0  c1g(n)   f(n)  c2g(n)} 



• Is 3n3  Q(n4) ?? 

• How about 22n Q(2n)?? 

 

Q(g(n)) = {f(n) :  positive constants c1, c2, and n0, 

such that n   n0,    0  c1g(n)   f(n)  c2g(n)} 



O(g(n)) = {f(n) :  

 positive constants c and n0, 

such that n   n0, 

we have 0   f(n)  cg(n) } 

For function g(n), we define O(g(n)), 

big-O of n, as the set: 

g(n) is an asymptotic upper bound for f(n). 

Intuitively: Set of all functions 

whose rate of growth is the same as 

or lower than that of g(n). 

f(n) = Q(g(n))  f(n) = O(g(n)). 

Q(g(n))   O(g(n)). 



• Any linear function an + b is in O(n2). How? 

• Show that 3n3=O(n4) for appropriate c and n0. 

 

O(g(n)) = {f(n) :  positive constants c and n0, 

such that n   n0, we have 0   f(n)  cg(n) } 



g(n) is an asymptotic lower bound for f(n). 

Intuitively: Set of all functions 

whose rate of growth is the same 

as or higher than that of g(n). 

f(n) = Q(g(n))  f(n) = W(g(n)). 

Q(g(n))   W(g(n)). 

W(g(n)) = {f(n) :  

 positive constants c and n0, 

such that n   n0, 

we have 0  cg(n)  f(n)} 

For function g(n), we define W(g(n)), 

big-Omega of n, as the set: 



 

 

• n = W(lg n). Choose c and n0. 

W(g(n)) = {f(n) :  positive constants c and n0, such 

that n  n0, we have 0  cg(n)  f(n)} 





• I.e., Q(g(n)) = O(g(n))  W(g(n)) 

• In practice, asymptotically tight bounds are 

obtained from asymptotic upper and lower 

bounds. 

Theorem :  For any two functions g(n) and f(n),  

           f(n) = Q(g(n)) iff  

 f(n) = O(g(n)) and f(n) = W(g(n)). 



• “Running time is O(f(n))”  Worst case is 
O(f(n)) 

• O(f(n)) bound on the worst-case running time 
 O(f(n)) bound on the running time of every 
input. 

• Q(f(n)) bound on the worst-case running time 
 Q(f(n)) bound on the running time of every 
input. 

• “Running time is W(f(n))”  Best case is 
W(f(n))  

• Can still say “Worst-case running time is 
W(f(n))” 

• Means worst-case running time is given by some 



• Insertion sort takes Q(n2) in the worst case, 

so sorting (as a problem) is O(n2).  Why? 

• Any sort algorithm must look at each item, so 

sorting is W(n). 

• In fact, using (e.g.) merge sort, sorting is Q(n 

lg n) in the worst case. 

• Later, we will prove that we cannot hope that any 

comparison sort to do better in the worst case. 



• Can use asymptotic notation in equations to 
replace expressions containing lower-order 
terms. 

• For example, 
4n3 + 3n2 + 2n + 1 = 4n3 + 3n2 + Q(n)  

= 4n3 + Q(n2) = Q(n3). How to interpret? 

• In equations, Q(f(n)) always stands for an 
anonymous function g(n)  Q(f(n)) 

• In the example above, Q(n2) stands for  
3n2 + 2n + 1. 



 f(n) becomes insignificant relative to g(n) as n 
approaches infinity: 

     lim [f(n) / g(n)] = 0 

                     
n

  
g(n) is an upper bound for f(n) that is not 

asymptotically tight. 

Observe the difference in this definition from 
previous ones. Why? 

o(g(n)) = {f(n):  c > 0,  n0 > 0 such that  
   n   n0, we have 0   f(n) < cg(n)}. 

For a given function g(n), the set little-o: 



w(g(n)) = {f(n):  c > 0,  n0 > 0 such that  

   n   n0, we have 0  cg(n) <  f(n)}. 

f(n) becomes arbitrarily large  relative to g(n) as n 

approaches infinity: 

    lim [f(n) / g(n)] = . 

                         
n

  
g(n) is a lower bound for f(n) that is not 

asymptotically tight. 

For a given function g(n), the set little-omega: 



             f  g    a  b 

 

f (n) = O(g(n))    a     b 

f (n) = W(g(n))    a    b 

f (n) = Q(g(n))    a  =  b 

f (n) = o(g(n))    a  <  b 

f (n) = w (g(n))    a  >  b 



• lim [f(n) / g(n)] = 0  f(n)  o(g(n)) 
    

n 

• lim [f(n) / g(n)] <   f(n)  O(g(n)) 
    

n 

• 0 < lim [f(n) / g(n)] <   f(n)  Q(g(n)) 
            

n 

• 0 < lim [f(n) / g(n)]  f(n)  W(g(n)) 
            

n 

• lim [f(n) / g(n)] =   f(n)  w(g(n)) 
    

n 

• lim [f(n) / g(n)] undefined  can’t say 
    

n 



• Transitivity 
f(n) = Q(g(n)) & g(n) = Q(h(n))  f(n) = Q(h(n)) 
f(n) = O(g(n)) & g(n) = O(h(n))  f(n) = O(h(n)) 
f(n) = W(g(n)) & g(n) = W(h(n))  f(n) = W(h(n)) 
f(n) = o (g(n)) & g(n) = o (h(n))  f(n) = o (h(n)) 
f(n) = w(g(n)) & g(n) = w(h(n))  f(n) = w(h(n))  

 

• Reflexivity 

 f(n) = Q(f(n)) 

    f(n) = O(f(n)) 

   f(n)  = W(f(n)) 

 

 



• Symmetry 

 f(n) = Q(g(n)) iff g(n) = Q(f(n))  

 

• Complementarity 

     f(n) = O(g(n)) iff g(n) = W(f(n))  

     f(n) =  o(g(n)) iff g(n) = w((f(n))  





• f(n) is  

• monotonically increasing if m  n  f(m)  f(n). 

• monotonically decreasing if m  n  f(m)  f(n). 

• strictly increasing if m < n  f(m) < f(n). 

• strictly decreasing if m > n  f(m) > f(n). 

 



• Useful Identities: 

 

 

 

 

• Exponentials and polynomials 
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x = logba is the  

exponent for a = bx. 

 

Natural log: ln a = logea 

Binary log: lg a = log2a 

 

lg2a = (lg a)2 

lg lg a  =  lg (lg a) 
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• If the base of a logarithm is changed from one constant to 

another, the value is altered by a constant factor. 

• Ex: log10 n * log210 = log2 n. 

• Base of logarithm is not an issue in asymptotic notation. 

• Exponentials with different bases differ by a exponential 

factor (not a constant factor). 

• Ex: 2n = (2/3)n*3n. 



• For a  0, b > 0, lim n ( lga n / nb ) = 0,  

so lga n = o(nb), and  nb = w(lga n ) 

• Prove using L’Hopital’s rule repeatedly 

 

• lg(n!) = Q(n lg n) 

• Prove using Stirling’s approximation (in the text) for 

lg(n!). 



Express functions in A in asymptotic notation using functions in B. 

 A                                         B                                     

5n2 + 100n               3n2 + 2 

 A  Q(n2), n2  Q(B)  A  Q(B) 

log3(n
2)            log2(n

3) 

logba = logca / logcb; A = 2lgn / lg3, B  = 3lgn, A/B =2/(3lg3) 

 nlg4                   3lg n 

alog b = blog a; B =3lg n=nlg 3; A/B =nlg(4/3)   as n 

lg2n                              n1/2 

lim ( lga n / nb ) = 0 (here a = 2 and b = 1/2)  A  o (B) 

 
n

 

A  Q(B) 

A  Q(B) 

A  w(B) 

A  o (B) 





• Why do we need summation formulas?  

For computing the running times of iterative constructs 

(loops). (CLRS – Appendix A) 

Example:  Maximum Subvector 

Given an array A[1…n] of numeric values (can be positive, zero, 

and negative) determine the subvector A[i…j] (1 i  j  n) 

whose sum of elements is maximum over all subvectors. 

 

1 -2 2 2 



MaxSubvector(A, n)  
 maxsum  0; 
 for i  1 to n  
     do for j = i to n 
        sum  0 
        for k  i to j   
   do sum += A[k] 
        maxsum  max(sum, maxsum) 
 return maxsum 

               n     n      j 

T(n) =    1 
             i=1   j=i  k=i 

NOTE:  This is not a simplified solution.  What is the final answer? 

 



• Constant Series: For integers a and b, a  b, 
 
 
 
 

 

 

• Linear Series (Arithmetic Series):  For n  0, 

 

 

 

• Quadratic Series:  For n  0, 
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• Cubic Series:  For n  0, 

 

 

 

 

• Geometric Series:  For real x  1, 

 

 

      

       For |x| < 1, 
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• Linear-Geometric Series:  For n  0, real c  1, 

 

 

 

 

• Harmonic Series: nth harmonic number, nI+, 
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• Telescoping Series: 

 

 

 

• Differentiating Series:  For |x| < 1, 
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• Approximation by integrals: 

• For monotonically increasing f(n) 

 

 

• For monotonically decreasing f(n) 

 

 

• How? 
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• nth harmonic number 
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