Course Name: Analysis and Design of Algorithms

Topics to be covered

- Asymptotic Notation
- Review of Functions \& Summations

Asymptotic Complexity

- Running time of an algorithm as a function of input size n for large n.
- Expressed using only the highest-order term in the expression for the exact running time.
- Instead of exact running time, say $\Theta\left(n^{2}\right)$.
- Describes behavior of function in the limit.
- Written using Asymptotic Notation.

Asymptotic Notation

- $\Theta, O, \Omega, 0, \omega$
- Defined for functions over the natural numbers.
- Ex: $f(n)=\Theta\left(n^{2}\right)$.
- Describes how $f(n)$ grows in comparison to n^{2}.
- Define a set of functions; in practice used to compare two function sizes.
- The notations describe different rate-of-growth relations between the defining function and the defined set of functions.

Θ-notation
 For function $g(n)$, we define $\Theta(g(n)$

 big-Theta of n, as the set:$\Theta(g(n))=\{f(n)$:
\exists positive constants c_{1}, c_{2}, and n_{0}, such that $\forall n \geq \boldsymbol{n}_{\mathbf{0}}$,
we have $0 \leq c_{1} g(n) \leq f(n) \leq \mathrm{c}_{2} g(n)$
\}
Intuitively: Set of all functions that have the same rate of growth as $g(n)$.

$g(n)$ is an asymptotically tight bound for $f(n)$.

Θ-notation

For function $g(n)$, we define $\Theta(g(n)$ big-Theta of n, as the set:
$\Theta(g(n))=\{f(n)$:
\exists positive constants c_{1}, c_{2}, and n_{0}, such that $\forall n \geq n_{0}$,
we have $0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)$
\}
Technically, $f(n) \in \Theta(g(n))$.
Older usage, $f(n)=\Theta(g(n))$.
I'll accept either...

$f(n)$ and $g(n)$ are nonnegative, for large n.

Eyamnle

$\Theta(g(n))=\left\{f(n): \exists\right.$ positive constants c_{1}, c_{2}, and n_{0}, such that $\left.\forall n \geq n_{0}, \quad 0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)\right\}$

- $10 n^{2}-3 n=\Theta\left(n^{2}\right)$
- What constants for n_{0}, c_{1}, and c_{2} will work?
- Make c_{1} a little smaller than the leading coefficient, and c_{2} a little bigger.
- To compare orders of growth, look at the term.
- Exercise: Prove that $n^{2} / 2-3 n=\Theta\left(n^{2}\right)$

Eyamnle

$\Theta(g(n))=\left\{f(n): \exists\right.$ positive constants c_{1}, c_{2}, and n_{0}, such that $\left.\forall n \geq n_{0}, \quad 0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)\right\}$

- Is $3 n^{3} \in \Theta\left(n^{4}\right)$??
- How about $2^{2 n} \in \Theta\left(2^{n}\right)$??

Fornotation ${ }^{\text {finctin }} g(n)$ we define $O(g(n))$

 big-O of n, as the set:$O(g(n))=\{f(n):$
\exists positive constants c and n_{0}, such that $\forall n \geq n_{0}$,
we have $0 \leq f(n) \leq \operatorname{cg}(n)\}$
Intuitively: Set of all functions whose rate of growth is the same as or lower than that of $g(n)$.
 $g(n)$ is an asymptotic upper bound for $f(n)$. $f(n)=\Theta(g(n)) \Rightarrow f(n)=O(g(n))$. $\Theta(g(n)) \subset O(g(n))$.

Examnles

$O(g(n))=\left\{f(n): \exists\right.$ positive constants c and n_{0}, such that $\forall n \geq \boldsymbol{n}_{0}$, we have $\left.0 \leq f(n) \leq \operatorname{cg}(n)\right\}$

- Any linear function $a n+b$ is in $O\left(n^{2}\right)$.
- Show that $3 n^{3}=O\left(n^{4}\right)$ for appropriate c and n_{0}.

Forr function $g(n)$, we define $\Omega(g(n))$ big-Omega of n, as the set:
$\Omega(g(n))=\{f(n):$
\exists positive constants c and n_{0}, such that $\forall n \geq \boldsymbol{n}_{\mathbf{0}}$,
we have $0 \leq \operatorname{cg}(n) \leq f(n)\}$
Intuitively: Set of all functions whose rate of growth is the same as or higher than that of $g(n)$.
 $g(n)$ is an asymptotic lower bound for $f(n)$.

$$
\begin{aligned}
& f(n)=\Theta(g(n)) \Rightarrow f(n)=\Omega(g(n)) . \\
& \Theta(g(n)) \subset \Omega(g(n)) .
\end{aligned}
$$

Examnile

$\Omega(g(n))=\left\{f(n): \exists\right.$ positive constants c and n_{0}, such that $\forall n \geq n_{0}$, we have $\left.0 \leq \mathrm{cg}(n) \leq f(n)\right\}$

- $\sqrt{ } n=\Omega(\lg n)$. Choose c and n_{0}.

Relations Between Θ, O, Ω

Relatinne Retwenn $\triangle \cap Q$

Theorem : For any two functions $g(n)$ and $f(n)$,

$$
\begin{aligned}
& f(n)=\Theta(g(n)) \text { iff } \\
& f(n)=\boldsymbol{O}(g(n)) \text { and } f(n)=\Omega(g(n)) .
\end{aligned}
$$

- l.e., $\Theta(g(n))=O(g(n)) \cap \Omega(g(n))$
- In practice, asymptotically tight bounds are obtained from asymptotic upper and lower bounds.

Running Times $O(f(n))^{\prime \prime} \Rightarrow$ Worst case is $O(f(n))$

- $O(f(n))$ bound on the worst-case running time $\Rightarrow O(f(n))$ bound on the running time of every input.
- $\Theta(f(n))$ bound on the worst-case running time $\Rightarrow \Theta(f(n))$ bound on the running time of every input.
- "Running time is $\Omega(f(n))$ " \Rightarrow Best case is $\Omega(f(n))$
- Can still say "Worst-case running time is $\Omega(f(n))^{\prime \prime}$

Example

sort takes $\Theta\left(n^{2}\right)$ in the worst case, so sorting (as a problem) is $O\left(n^{2}\right)$. Why?

- Any sort algorithm must look at each item, so sorting is $\Omega(n)$.
- In fact, using (e.g.) merge sort, sorting is $\Theta(n$ lg n) in the worst case.
- Later, we will prove that we cannot hope that any comparison sort to do better in the worst case.

Asymptotic Notation in Equations

- Can use asymptotic notation in equations to replace expressions containing lower-order terms.
- For example,
$4 n^{3}+3 n^{2}+2 n+1=4 n^{3}+3 n^{2}+\Theta(n)$
$=4 n^{3}+\Theta\left(n^{2}\right)=\Theta\left(n^{3}\right)$. How to interpret?
- In equations, $\Theta(f(n))$ always stands for an anonymous function $g(n) \in \Theta(f(n))$
- In the example above, $\Theta\left(n^{2}\right)$ stands for $3 n^{2}+2 n+1$.

$o(g(n))=\left\{f(n): \forall \boldsymbol{c}>\mathbf{0}, \exists \boldsymbol{n}_{\mathbf{0}}>\mathbf{0}\right.$ such that $\forall n \geq n_{0}$, we have $\left.0 \leq f(n)<c g(n)\right\}$.

$f(n)$ becomes insignificant relative to $g(n)$ as n approaches infinity:
$g(n)$ is an upper bound for $f(n)$ that is not asymptotically tight.
Observe the difference in this definition from previous ones.

Tonnagtationanction $g(n)$, the set little-omega:

$\omega(g(n))=\left\{f(n): \forall \boldsymbol{c}>\mathbf{0}, \exists \boldsymbol{n}_{\mathbf{0}}>\mathbf{0}\right.$ such that $\forall n \geq n_{0}$, we have $\left.0 \leq \operatorname{cg}(n)<f(n)\right\}$.
$f(n)$ becomes arbitrarily large relative to $g(n)$ as n approaches infinity:
$g(n)$ is a lower bound for $f(n)$ that is not asymptotically tight.

Comparison of Functions $f \leftrightarrow g \approx a \leftrightarrow b$

$$
\begin{aligned}
& f(n)=O(g(n)) \approx a \leq b \\
& f(n)=\Omega(g(n)) \approx a \geq b \\
& f(n)=\Theta(g(n)) \approx a=b \\
& f(n)=O(g(n)) \approx a<b \\
& f(n)=\omega(g(n)) \approx a>b
\end{aligned}
$$

$\left.\operatorname{Limits}_{n \rightarrow \infty} \underset{(n)}{ } / g(n)\right]=0 \Rightarrow f(n) \in o(g(n))$

- $\lim _{n \rightarrow \infty}[f(n) / g(n)]<\infty \Rightarrow f(n) \in O(g(n))$
- $0<\lim _{n \rightarrow \infty}[f(n) / g(n)]<\infty \Rightarrow f(n) \in \Theta(g(n))$
- $0<\lim _{n \rightarrow \infty}[f(n) / g(n)] \Rightarrow f(n) \in \Omega(g(n))$
- $\lim _{n \rightarrow \infty}[f(n) / g(n)]=\infty \Rightarrow f(n) \in \omega(g(n))$
- $\lim _{n \rightarrow \infty}[f(n) / g(n)]$ undefined \Rightarrow can't say

Prorpasticity

$$
\begin{aligned}
& f(n)=\Theta(g(n)) \& g(n)=\Theta(h(n)) \Rightarrow f(n)=\Theta(h(n)) \\
& f(n)=O(g(n)) \& g(n)=O(h(n)) \Rightarrow f(n)=O(h(n)) \\
& f(n)=\Omega(g(n)) \& g(n)=\Omega(h(n)) \Rightarrow f(n)=\Omega(h(n)) \\
& f(n)=0(g(n)) \& g(n)=O(h(n)) \Rightarrow f(n)=0(h(n)) \\
& f(n)=\omega(g(n)) \& g(n)=\omega(h(n)) \Rightarrow f(n)=\omega(h(n))
\end{aligned}
$$

- Reflexivity

$$
\begin{gathered}
f(n)=\Theta(f(n)) \\
f(n)=O(f(n)) \\
f(n)=\Omega(f(n))
\end{gathered}
$$

Prsportetios

$$
f(n)=\Theta(g(n)) \text { iff } g(n)=\Theta(f(n))
$$

- Complementarity

$$
\begin{aligned}
& f(n)=O(g(n)) \text { iff } g(n)=\Omega(f(n)) \\
& f(n)=O(g(n)) \text { iff } g(n)=\omega((f(n))
\end{aligned}
$$

Common Functions

Monotonicity

- $f(n)$ is
- monotonically increasing if $m \leq n \Rightarrow f(m) \leq f(n)$.
- monotonically decreasing if $m \geq n \Rightarrow f(m) \geq f(n)$.
- strictly increasing if $m<n \Rightarrow f(m)<f(n)$.
- strictly decreasing if $m>n \Rightarrow f(m)>f(n)$.

Exponentials

- Useful Identities:

$$
\begin{aligned}
& a^{-1}=\frac{1}{a} \\
& \left(a^{m}\right)^{n}=a^{m n} \\
& a^{m} a^{n}=a^{m+n}
\end{aligned}
$$

- Exponentials and polynomials

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{n^{b}}{a^{n}}=0 \\
& \Rightarrow n^{b}=o\left(a^{n}\right)
\end{aligned}
$$

Logarithms

$x=\log _{b} a$ is the exponent for $a=b^{x}$.

Natural log: In $a=\log _{e} a$ Binary log: $\lg a=\log _{2} a$

$$
\lg ^{2} a=(\lg a)^{2}
$$

$$
\lg \lg a=\lg (\lg a)
$$

$$
\begin{aligned}
& \log _{b} a=\frac{\log _{c} a}{\log _{c} b} \\
& \log _{b}(1 / a)=-\log _{b} a \\
& \log _{b} a=\frac{1}{\log _{a} b} \\
& a^{\log _{b} c}=c^{\log _{b} a}
\end{aligned}
$$

Logarithms and exponentials Bases

- If the base of a logarithm is changed from one constant to another, the value is altered by a constant factor.
- Ex: $\log _{10} n * \log _{2} 10=\log _{2} n$.
- Base of logarithm is not an issue in asymptotic notation.
- Exponentials with different bases differ by a exponential factor (not a constant factor).
- Ex: $2^{n}=(2 / 3)^{n *} 3^{n}$.

Polylogarithms

- For $a \geq 0, b>0, \lim _{n \rightarrow \infty}\left(\lg ^{a} n / n^{b}\right)=0$, so $\lg ^{a} n=o\left(n^{b}\right)$, and $n^{b}=\omega\left(\lg ^{a} n\right)$
- Prove using L'Hopital's rule repeatedly
- $\lg (n!)=\Theta(n \lg n)$
- Prove using Stirling's approximation (in the text) for $\lg (n!)$.

Exerciseon in A in asymptotic notation using functions in B.

A B
$5 n^{2}+100 n$
$3 n^{2}+2$
$A \in \Theta(B)$
$A \in \Theta\left(n^{2}\right), n^{2} \in \Theta(B) \Rightarrow A \in \Theta(B)$
$\log _{3}\left(n^{2}\right)$
$\log _{2}\left(n^{3}\right)$
$A \in \Theta(B)$
$\log _{n} a=\log _{a} a / \log _{d} b ; \mathrm{A}=2 \log n / \log 3, \mathrm{~B}=3 \lg n, \mathrm{~A} / \mathrm{B}=2 /(3 \lg 3)$
$n^{\lg 4}$
$3^{\lg n}$
$\mathrm{A} \in \omega(\mathrm{B})$
$a^{\log b}=b^{\log a} ; \mathrm{B}=3^{\lg n}=n^{\lg 3} ; \mathrm{A} / \mathrm{B}=n^{\lg (4 / 3)} \rightarrow \infty$ as $n \rightarrow \infty$
$\lg ^{2} n$
$n^{1 / 2}$
$\mathbf{A} \in O$ (B)
$\lim \left(\lg ^{a} n / n^{b}\right)=0$ (here $a=2$ and $\left.b=1 / 2\right) \Rightarrow \mathrm{A} \in o$ (B)
$n \rightarrow \infty$

Summations Review

Review on Summations
 Why do we need summation rormulas?

For computing the running ti
(loops). (CLRS - Appendix A)

Example: Maximum Subvector

Given an array $A[1 \ldots n]$ of numeric values (can be positive, zero, and negative) determine the subvector $A[i . .].(1 \leq i \leq j \leq n)$ whose sum of elements is maximum over all subvectors.

1	-2	2	2

$\operatorname{MaxSubvector}(A, n)$

$$
\begin{aligned}
& \operatorname{maxsum} \leftarrow 0 \\
& \text { for } i \leftarrow 1 \text { to } n \\
& \quad \text { do for } j=i \text { to } n
\end{aligned}
$$

$$
\begin{aligned}
& \text { sum } \leftarrow 0 \\
& \text { for } k \leftarrow i \text { to } j \\
& \quad \text { do } \text { sum }+=A[k] \\
& \text { maxsum } \leftarrow \max (\text { sum, maxsum })
\end{aligned}
$$

return maxsum

$$
\mathrm{T}(\mathrm{n})=\sum_{i=1}^{n} \sum_{j=i}^{n} \sum_{k=i}^{i} 1
$$

Review on Summations

- Constant Series: For integers a and $b, a \leq b$,

$$
\sum_{i=a}^{b} 1=b-a+1
$$

- Linear Series (Arithmetic Series): For $n \geq 0$,

$$
\sum_{i=1}^{n} i=1+2+\cdots+n=\frac{n(n+1)}{2}
$$

- Quadratic Series: For $n \geq 0$,

$$
\sum_{i=1}^{n} i^{2}=1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Review on Summations

- Cubic Series: For $n \geq 0$,

$$
\sum_{i=1}^{n} i^{3}=1^{3}+2^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

- Geometric Series: For real $x \neq 1$,

$$
\sum_{k=0}^{n} x^{k}=1+x+x^{2}+\cdots+x^{n}=\frac{x^{n+1}-1}{x-1}
$$

For $|x|<1, \sum_{k=0}^{\infty} x^{k}=\frac{1}{1-x}$

Review on Summations

- Linear-Geometric Series: For $n \geq 0$, real $c \neq 1$,

$$
\sum_{i=1}^{n} i c^{i}=c+2 c^{2}+\cdots+n c^{n}=\frac{-(n+1) c^{n+1}+n c^{n+2}+c}{(c-1)^{2}}
$$

- Harmonic Series: nth harmonic number, nel+,

$$
\begin{aligned}
H_{n} & =1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} \\
& =\sum_{k=1}^{n} \frac{1}{k}=\ln (n)+O(1)
\end{aligned}
$$

Review on Summations

- Telescoping Series:

$$
\sum_{k=1}^{n} a_{k}-a_{k-1}=a_{n}-a_{0}
$$

- Differentiating Series: For $|x|<1$,

$$
\sum_{k=0}^{\infty} k x^{k}=\frac{x}{(1-x)^{2}}
$$

Review on Summations

- Approximation by integrals:
- For monotonically increasing f(n)

$$
\int_{m-1}^{n} f(x) d x \leq \sum_{k=m}^{n} f(k) \leq \int_{m}^{n+1} f(x) d x
$$

- For monototonically decreasing $f\left(\begin{array}{l}m \\ m\end{array}\right.$
- How? $\int_{m}^{n+1} f(x) d x \leq \sum_{k=m}^{n} f(k) \leq \int_{m-1}^{n} f(x) d x$

Review on Summations

- nth harmonic number

$$
\begin{aligned}
& \sum_{k=1}^{n} \frac{1}{k} \geq \int_{1}^{n+1} \frac{d x}{x}=\ln (n+1) \\
& \sum_{k=2}^{n} \frac{1}{k} \leq \int_{1}^{n} \frac{d x}{x}=\ln n \\
& \Rightarrow \sum_{k=1}^{n} \frac{1}{k} \leq \ln n+1
\end{aligned}
$$

