Course Name: Analysis and Design of Algorithms

#### Topics to be covered

- Asymptotic Notation
- Review of Functions & Summations

#### Asymptotic Complexity

- Running time of an algorithm as a function of input size n for large n.
- Expressed using only the highest-order term in the expression for the exact running time.
  - Instead of exact running time, say  $\Theta(n^2)$ .
- Describes behavior of function in the limit.
- Written using Asymptotic Notation.

#### Asymptotic Notation • Θ, Ο, Ω, ο, ω

Defined for functions over the natural numbers.

• **Ex:**  $f(n) = \Theta(n^2)$ .

• Describes how f(n) grows in comparison to  $n^2$ .

 Define a set of functions; in practice used to compare two function sizes.

 The notations describe different rate-of-growth relations between the defining function and the defined set of functions.

#### $\Theta$ -notation For function g(n), we define $\Theta(g(n))$ big-Theta of n, as the set:

 $\Theta(g(n)) = \{f(n) :$   $\exists \text{ positive constants } c_1, c_2, \text{ and } n_{0,}$ such that  $\forall n \ge n_0$ , we have  $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ 

*Intuitively*: Set of all functions that have the same *rate of growth* as g(n).



g(n) is an asymptotically tight bound for f(n).

#### $\Theta$ -notation For function g(n), we define $\Theta(g(n))$ big-Theta of n, as the set:

 $\Theta(g(n)) = \{f(n) : \exists \text{ positive constants } c_1, c_2, \text{ and } n_{0,} \\ \text{such that } \forall n \ge n_0, \\ \text{we have } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \\ \}$ 

Technically,  $f(n) \in \Theta(g(n))$ . Older usage,  $f(n) = \Theta(g(n))$ . I'll accept either...

 $c_2g(n)$ f(n) $c_1g(n)$  $n_0$  $f(n) = \Theta(g(n))$ 

f(n) and g(n) are nonnegative, for large n.

#### Example

 $\Theta(g(n)) = \{f(n) : \exists \text{ positive constants } c_1, c_2, \text{ and } n_0, \\ \text{such that } \forall n \ge n_0, \quad 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \}$ 

- $10n^2 3n = \Theta(n^2)$
- What constants for  $n_0$ ,  $c_1$ , and  $c_2$  will work?
- Make  $c_1$  a little smaller than the leading coefficient, and  $c_2$  a little bigger.
- To compare orders of growth, look at the leading term.
- Exercise: Prove that  $n^2/2-3n = \Theta(n^2)$

## Example $\Theta(g(n)) = \{f(n) : \exists \text{ positive constants } c_1, c_2, \text{ and } n_0, \text{ such that } \forall n \ge n_0, 0 \le c_1 g(n) \le f(n) \le c_2 g(n)\}$

- Is  $3n^3 \in \Theta(n^4)$  ??
- How about  $2^{2n} \in \Theta(2^n)$ ??

### **O-notation** For function g(n), we define O(g(n)), big-O of *n*, as the set:

 $O(g(n)) = \{f(n) :$   $\exists$  positive constants *c* and  $n_{0,}$ such that  $\forall n \ge n_0$ ,

we have  $0 \le f(n) \le cg(n)$  }

*Intuitively*: Set of all functions whose *rate of growth* is the same as or lower than that of g(n).



g(n) is an asymptotic upper bound for f(n).  $f(n) = \Theta(g(n)) \Rightarrow f(n) = O(g(n)).$  $\Theta(g(n)) \subset O(g(n)).$ 

# Examples $O(g(n)) = \{f(n) : \exists \text{ positive constants } c \text{ and } n_0,$ such that $\forall n \geq n_0$ , we have $0 \leq f(n) \leq cg(n) \}$

- Any linear function an + b is in  $O(n^2)$ . **How?**
- Show that  $3n^3 = O(n^4)$  for appropriate *c* and  $n_0$ .

#### $\Omega$ -notation For function g(n), we define $\Omega(g(n))$ big-Omega of n, as the set:

#### $\Omega(g(n)) = \{f(n) :$ $\exists \text{ positive constants } c \text{ and } n_{0,}$ such that $\forall n \ge n_0$ ,

#### we have $0 \leq cg(n) \leq f(n)$

*Intuitively*: Set of all functions whose *rate of growth* is the same as or higher than that of g(n).



g(n) is an *asymptotic lower bound* for f(n).

 $f(n) = \Theta(g(n)) \Longrightarrow f(n) = \Omega(g(n)).$  $\Theta(g(n)) \subset \Omega(g(n)).$ 

#### Example

 $\Omega(g(n)) = \{f(n) : \exists \text{ positive constants } c \text{ and } n_0, \text{ such that } \forall n \ge n_0, \text{ we have } 0 \le cg(n) \le f(n)\}$ 

•  $\sqrt{n} = \Omega(\lg n)$ . Choose *c* and  $n_0$ .

#### Relations Between $\Theta$ , O, $\Omega$







**Relations Retween (a) (b)** <u>Theorem</u>: For any two functions g(n) and f(n),  $f(n) = \Theta(g(n))$  iff f(n) = O(g(n)) and  $f(n) = \Omega(g(n))$ .

• I.e.,  $\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$ 

 In practice, asymptotically tight bounds are obtained from asymptotic upper and lower bounds.

## **Running Times** "Running time is O(f(n))" $\Rightarrow$ Worst case is O(f(n))

- O(f(n)) bound on the worst-case running time  $\Rightarrow O(f(n))$  bound on the running time of every input.
- $\Theta(f(n))$  bound on the worst-case running time  $\Rightarrow \Theta(f(n))$  bound on the running time of every input.
- "Running time is  $\Omega(f(n))$ "  $\Rightarrow$  Best case is  $\Omega(f(n))$
- Can still say "Worst-case running time is Ω(f(n))"

## • Insertion sort takes $\Theta(n^2)$ in the worst case, so sorting (as a problem) is $O(n^2)$ . Why?

- Any sort algorithm must look at each item, so sorting is Ω(n).
- In fact, using (e.g.) merge sort, sorting is Θ(n
   Ig n) in the worst case.

• Later, we will prove that we cannot hope that any comparison sort to do better in the worst case.

## Asymptotic Notation in Equations Can use asymptotic notation in equations to replace expressions containing lower-order

terms.

#### • For example,

 $4n^3 + 3n^2 + 2n + 1 = 4n^3 + 3n^2 + \Theta(n)$ =  $4n^3 + \Theta(n^2) = \Theta(n^3)$ . How to interpret?

- In equations,  $\Theta(f(n))$  always stands for an *anonymous function*  $g(n) \in \Theta(f(n))$ 
  - In the example above,  $\Theta(n^2)$  stands for  $3n^2 + 2n + 1$ .

#### **P**-th a **bate** a function g(n), the set little-o:

## $o(g(n)) = \{f(n): \forall c > 0, \exists n_0 > 0 \text{ such that} \\ \forall n \ge n_0, \text{ we have } 0 \le f(n) < cg(n)\}.$

f(n) becomes insignificant relative to g(n) as n approaches infinity:  $\lim_{n \to \infty} [f(n) / g(n)] = 0$ 

g(n) is an upper bound for f(n) that is not asymptotically tight.
Observe the difference in this definition from previous ones. Why?

#### Porhostation g(n), the set little-omega:

## $\mathcal{O}(g(n)) = \{f(n): \forall c > 0, \exists n_0 > 0 \text{ such that} \\ \forall n \ge n_0, \text{ we have } 0 \le cg(n) < f(n)\}.$

f(n) becomes arbitrarily large relative to g(n) as n approaches infinity:  $\lim_{n \to \infty} [f(n) / g(n)] = \infty.$ 

g(n) is a **lower bound** for f(n) that is not asymptotically tight.

#### **Comparison of Functions** $f \leftrightarrow g \approx a \leftrightarrow b$

 $f(n) = O(g(n)) \approx a \leq b$   $f(n) = \Omega(g(n)) \approx a \geq b$   $f(n) = \Theta(g(n)) \approx a = b$   $f(n) = O(g(n)) \approx a < b$  $f(n) = \omega(g(n)) \approx a > b$ 

## $\operatorname{Lim}_{\substack{n \to \infty}} [f(n) / g(n)] = 0 \Longrightarrow f(n) \in o(g(n))$

- $\lim_{n \to \infty} [f(n) / g(n)] < \infty \Longrightarrow f(n) \in O(g(n))$
- $0 < \lim_{n \to \infty} [f(n) / g(n)] < \infty \Longrightarrow f(n) \in \Theta(g(n))$
- $0 < \lim_{n \to \infty} [f(n) / g(n)] \Rightarrow f(n) \in \Omega(g(n))$
- $\lim_{n\to\infty} [f(n) / g(n)] = \infty \Longrightarrow f(n) \in \omega(g(n))$
- $\lim_{n \to \infty} [f(n) / g(n)]$  undefined  $\Rightarrow$  can't say

#### P-romestivity

 $f(n) = \Theta(g(n)) \& g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$   $f(n) = O(g(n)) \& g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))$   $f(n) = \Omega(g(n)) \& g(n) = \Omega(h(n)) \Rightarrow f(n) = \Omega(h(n))$   $f(n) = o(g(n)) \& g(n) = o(h(n)) \Rightarrow f(n) = o(h(n))$  $f(n) = \omega(g(n)) \& g(n) = \omega(h(n)) \Rightarrow f(n) = \omega(h(n))$ 

#### Reflexivity

 $f(n) = \Theta(f(n))$ f(n) = O(f(n)) $f(n) = \Omega(f(n))$ 

#### **P-r symmetry s** $f(n) = \Theta(g(n)) \text{ iff } g(n) = \Theta(f(n))$

Complementarity

 $f(n) = O(g(n)) \text{ iff } g(n) = \Omega(f(n))$  $f(n) = o(g(n)) \text{ iff } g(n) = \omega((f(n)))$ 

## Common Functions

#### Monotonicity

- *f*(*n*) is
  - monotonically increasing if  $m \le n \Rightarrow f(m) \le f(n)$ .
  - monotonically decreasing if  $m \ge n \Rightarrow f(m) \ge f(n)$ .
  - strictly increasing if  $m < n \Rightarrow f(m) < f(n)$ .
  - strictly decreasing if  $m > n \Rightarrow f(m) > f(n)$ .

#### Exponentials

• Useful Identities:

$$a^{-1} = \frac{1}{a}$$
$$(a^m)^n = a^{mn}$$
$$a^m a^n = a^{m+n}$$

$$a^m a^n = a^{m+n}$$

Exponentials and polynomials

$$\lim_{n \to \infty} \frac{n^b}{a^n} = 0$$
$$\implies n^b = o(a^n)$$

#### Logarithms

 $x = \log_b a$  is the exponent for  $a = b^x$ .

Natural log: In  $a = \log_e a$ Binary log: Ig  $a = \log_2 a$ 

 $lg^{2}a = (lg a)^{2}$ <br/>lg lg a = lg (lg a)

 $a = b^{\log_b a}$  $\log_c(ab) = \log_c a + \log_c b$  $\log_{h} a^{n} = n \log_{h} a$  $\log_b a = \frac{\log_c a}{\log_c b}$  $\log_{h}(1/a) = -\log_{h}a$  $\log_b a = \frac{1}{\log_a b}$  $a^{\log_b c} = c^{\log_b a}$ 

### Logarithms and exponentials – Bases

- If the base of a logarithm is changed from one constant to another, the value is altered by a constant factor.
  - **<u>Ex</u>**:  $\log_{10} n * \log_2 10 = \log_2 n$ .
  - Base of logarithm is not an issue in asymptotic notation.
- Exponentials with different bases differ by a exponential factor (not a constant factor).
  - **<u>Ex:</u>** $2^n = (2/3)^{n*} 3^n$ .

#### Polylogarithms

- For  $a \ge 0$ , b > 0,  $\lim_{n \to \infty} ( |g^a n / n^b ) = 0$ , so  $|g^a n = o(n^b)$ , and  $n^b = \omega(|g^a n|)$ 
  - Prove using L'Hopital's rule repeatedly

#### • $\lg(n!) = \Theta(n \lg n)$

Prove using Stirling's approximation (in the text) for Ig(n!).

## Express functions in A in asymptotic notation using functions in B.

B A  $A \in \Theta(B)$  $5n^2 + 100n$  $3n^2 + 2$  $\log_3(n^2)$  $\log_{2}(n^{3})$  $A \in \Theta(B)$  $\log_{b}a = \log_{c}a / \log_{c}b; A = 2\lg n / \lg 3, B = 3\lg n, A/B = 2/(3\lg 3)$  $3^{\log n}$ nlg4  $A \in \omega(B)$  $a^{\log b} = b^{\log a}$ : **B** = 3<sup>lg n</sup> =  $n^{lg 3}$ : A/B =  $n^{lg(4/3)} \rightarrow \infty$  as  $n \rightarrow \infty$  $A \in o(B)$  $lg^2n$  $n^{1/2}$ lim  $(\lg^a n / n^b) = 0$  (here a = 2 and b = 1/2)  $\Rightarrow A \in o(B)$ 

### Summations – Review

## Review on Summation formulas?

For computing the running times of iterative constructs (loops). (CLRS – Appendix A)

Example: Maximum Subvector

Given an array A[1...n] of numeric values (can be positive, zero, and negative) determine the subvector A[i...j] ( $1 \le i \le j \le n$ ) whose sum of elements is maximum over all subvectors.



**Device Constitute** MaxSubvector(A, n) maxsum  $\leftarrow 0$ ; for  $i \leftarrow 1$  to ndo for j = i to nsum  $\leftarrow 0$ for  $k \leftarrow i$  to jdo sum += A[k]maxsum  $\leftarrow \max(sum, maxsum)$ return maxsum

$$\bullet \mathbf{T}(\mathbf{n}) = \sum_{i=1}^{n} \sum_{j=i}^{n} \sum_{k=i}^{j} 1$$

•NOTE: This is not a simplified solution. What *is* the final answer?

• **Constant Series:** For integers a and b,  $a \le b$ ,

$$\sum_{i=a}^{b} 1 = b - a + 1$$

• Linear Series (Arithmetic Series): For  $n \ge 0$ ,

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

• Quadratic Series: For  $n \ge 0$ ,  $\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$ 

#### **Review on Summations** • Cubic Series: For $n \ge 0$ ,

$$\sum_{i=1}^{n} i^{3} = 1^{3} + 2^{3} + \dots + n^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

• Geometric Series: For real  $x \neq 1$ ,

$$\sum_{k=0}^{n} x^{k} = 1 + x + x^{2} + \dots + x^{n} = \frac{x^{n+1} - 1}{x - 1}$$

For 
$$|x| < 1$$
,  $\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$ 

• Linear-Geometric Series: For  $n \ge 0$ , real  $c \ne 1$ ,

$$\sum_{i=1}^{n} ic^{i} = c + 2c^{2} + \dots + nc^{n} = \frac{-(n+1)c^{n+1} + nc^{n+2} + c}{(c-1)^{2}}$$

• Harmonic Series: *n*th harmonic number,  $n \in I^+$ ,

$$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

$$=\sum_{k=1}^{n}\frac{1}{k}=\ln(n)+O(1)$$

Telescoping Series:

$$\sum_{k=1}^{n} a_{k} - a_{k-1} = a_{n} - a_{0}$$

• **Differentiating Series:** For |x| < 1,

$$\sum_{k=0}^{\infty} kx^k = \frac{x}{\left(1-x\right)^2}$$

#### Approximation by integrals:

• For monotonically increasing f(n)

 $\int_{k=m}^{n} f(x)dx \leq \sum_{k=m}^{n} f(k) \leq \int_{k=m}^{n+1} f(x)dx$ • For monotonically decreasing f(n)

• How?

$$\int_{n}^{+1} f(x) dx \le \sum_{k=m}^{n} f(k) \le \int_{m-1}^{n} f(x) dx$$

• *n*th harmonic number

$$\sum_{k=1}^{n} \frac{1}{k} \ge \int_{1}^{n+1} \frac{dx}{x} = \ln(n+1)$$

$$\sum_{k=2}^{n} \frac{1}{k} \le \int_{1}^{n} \frac{dx}{x} = \ln n$$

$$\Rightarrow \sum_{k=1}^{n} \frac{1}{k} \le \ln n + 1$$