Course Name: Analysis and Design of Algorithms

Topics to be covered

• Union and Find for Disjoint Data sets

Union-Find Problem

- Given a set {1, 2, ..., n} of n elements
- Initially each element is in a different set
 {1}, {2}, ..., {n}
- An intermixed sequence of union and find operations is performed
- A union operation combines two sets into one
 - Each of the n elements is in exactly one set at any time
 - Can be proven by induction
- A find operation identifies the set that contains a particular element
- Application Equivalence Class

Disjoint Sets

- Suppose we have N distinct items. We want to partition the items into a collection of sets such that:
 - each item is in a set
 - no item is in more than one set
- Examples
 - BU students according to majors, or
 - BU students according to GPA, or
 - Graph vertices according to connected components
- The resulting sets are said to be *disjoint sets*.

Disjoint sets

- Set : a collection of (distinguishable) elements
- Two sets are disjoint if they have no common elements
- Disjoint-set data structure:
 - maintains a collection of disjoint sets
 - each set has a representative element
 - supported operations:
 - MakeSet(x)
 - Find(x)
 - Union(x,y)

Disjoint sets

- MakeSet(x)
 - Given object x, create a new set whose only element (and representative) is pointed to by x
- Find(x)
 - Given object x, return (a pointer to) the representative of the set containing x
 - Assumption: there is a pointer to each x so we never have to look for an element in the structure

Disjoint sets

Union(x,y)

- Given two elements x, y, merge the disjoint sets containing them.
- The original sets are destroyed.
- The new set has a new representative (usually one of the representatives of the original sets)
- At most *n-1* Unions can be performed where *n* is the number of elements (why?)

Union-Find Algorithms

Disjoint set algorithms are sometimes called *union-find* algorithms.

Disjoint Set Example

Find the connected components of the undirected graph G=(V,E) (maximal subgraphs that are connected).

for (each vertex v in V)
 Makeset(v): put v in its own set
for (each edge (u,v) in E)
 if (find(u) ~= find(v))
 union(u,v)

Now we can find if two vertices x and y are in the same connected component by testing find(x) == find(y)

Disjoint sets -- implementation

In the discussion that follows:

- *n* is the total number of elements (in all sets).
- *m* is the total number of operations performed

Disjoint Sets:Implementation #1

- Using linked lists:
 - The first element of the list is the representative
 - Each node contains:
 - an element
 - a pointer to the next node in the list
 - a pointer to the representative

Disjoint Sets: Implementation#1

Using linked lists:

- MakeSet(x)
 - Create a list with only one node, for x
 - Time O(1)
- Find(x)
 - Return the pointer to the representative (assuming you are pointing at the x node)
 - Time O(1)

Disjoint Sets:Implementation#1

Using linked lists:

- Union(x,y)
 - 1 . Append y's list to x's list.
 - 2. Pick x as a representative
 - 3 . Update y's "representative" pointers
 - A sequence of m operations may take O(m²) time
 - <u>Improvement</u>: let each representative keep track of the length of its list and always append the shorter list to the longer one.
 - Now, a sequence of m operations takes O(m+nlgn) time (why?)

Disjoint Sets:Implementation#1 An Improvement

- Let each representative keep track of the length of its list and always append the shorter list to the longer one.
- Theorem: Any sequence of m operations takes O(m+n log n) time.

Disjoint Sets:Implementation#2

Using arrays:

- Keep an array of size n
- Cell *i* of the array holds the representative of the set containing *i*.
- Similar to lists, simpler to implement.

A Tight Bound

- O(n + u log u + f), where u and f are, respectively, the number of union and find operations in the sequence of requests
- Can we do better?

Up-Trees

• A simple data structure for implementing disjoint sets is the *up-tree*.

H, A and W belong to the same set. H is the representative

X, B, R and F are in the same set. X is the representative

A Set As A Tree

• S = {2, 4, 5, 9, 11, 13, 30}

Some possible tree representations:

Operations in Up-Trees Find is easy. Just follow pointer to representative element. The representative has no parent. find(x)

- 1. if (parent(x) exists)// not the root return(find(parent(x));
- 2. else return (x);

Worst case, height of the tree

- Start at the node that represents element i and climb up the tree until the root is reached
- Return the element in the root
- To climb the tree, each node must have a parent pointer

Result Of A Find Operation

- find(i) is to identify the set that contains element i
- In most applications of the union-find problem, the user does not provide set identifiers
- The requirement is that find(i) and find(j) return the same value iff elements i and j are in the same set

find(i) will return the element that is in the tree root

Possible Node Structure Use nodes that have two fields:

- element and parent
- Use an array table[] such that table[i] is a pointer to the node whose element is i
- To do a find(i) operation, start at the node given by table[i] and follow parent fields until a node whose parent field is null is reached
- Return element in this root node

Better Representation

 Use an integer array parent[] such that parent[i] is the element that is the parent of element i

Union

• Union is more complicated.

 Make one representative element point to the other, but which way?
 Does it matter?

 In the example, some elements are now deeper away from the root

Union(H, X)

X points to H B, R and F are now deeper

H points to X A and W are now deeper

Union public union(rootA, rootB) {parent[rootB] = rootA;}

• Time Complexity: O(1)

A worse case for Union

Union can be done in O(1), but may cause find to become O(n)

Consider the result of the following sequence of operations:

Union (A, B) Union (C, A) Union (D, C) Union (E, D)

Two Heuristics

- There are two heuristics that improve the performance of union-find.
 - Union by weight or height
 - Path compression on find

Height Rule

- Make tree with smaller height a subtree of the other tree
- Break ties arbitrarily

Make tree with fewer number of elements a subtree of the other tree Break ties arbitrarily

Implementation

- Root of each tree must record either its height or the number of elements in the tree.
- When a union is done using the height rule, the height increases only when two trees of equal height are united.
- When the weight rule is used, the weight of the new tree is the sum of the weights of the trees that are united.

Height Of A Tree

 If we start with single element trees and perform unions using either the height or the weight rule. The height of a tree with p elements is at most floor (log₂p) + 1.

• Proof is by induction on p.

Union by Weight Heuristic

```
Always attach smaller tree to larger.
 union(x,y)
     rep x = find(x);
     rep y = find(y);
     if (weight[rep x] < weight[rep y])</pre>
           A[rep x] = rep y;
           weight[rep y] += weight[rep x];
     else
           A[rep y] = rep x;
```

weight[rep x] += weight[rep_y];

Performance w/ Union by Weight

- If unions are done by weight, the depth of any element is never greater than log n + 1.
- Inductive Proof:
 - Initially, ever element is at depth zero.
 - When its depth increases as a result of a union operation (it's in the smaller tree), it is placed in a tree that becomes at least twice as large as before (union of two equal size trees).
 - How often can each union be done? -- Ig n times, because after at most Ig n unions, the tree will contain all n elements.
- Therefore, find becomes O(log n) when union by

Path Compression

Each time we do a find on an element E, we make all elements on path from root to E be immediate children of root by making each element's parent be the representative.

```
find(x)
```

When path compression is done, a sequence of m operations takes O(m log n) time. Amortized time is O(log n) per operation.

• find(1)

Do additional work to make future finds easier

Path Compression

g

е

- Make all nodes on find path point to tree root.
- find(1)

a, b, c, d, e, f, and g are subtrees Makes two passes up the tree

Ackermann's Functions

- The Ackermann's function is the simplest example of a well-defined total function which is computable but not primitive recursive.
- "A function to end all functions" -- Gunter Dötzel.
 - 1. If m = 0 then A(m, m) = m + 1
 - 2. If n = 0 then A(m, n) = A(m-1, 1)
 - 3. Otherwise, A(m, n) = A(m-1, A(m, n-1))
- The function f(n) = A(n, n) grows much faster than polynomials or exponentials or any function that you can imagine

Ackermann's Function

- Ackermann's function.
 - A(m,n) = 2ⁿ, m = 1 and n >= 1
 - A(m,n) = A(m-1,2), m>= 2 and n = 1
 - A(m,n) = A(m-1,A(m,n-1)), m,n >= 2
- Ackermann's function grows very rapidly as m and n increase
 A(2,4) = 2^{65,536}

- Time Complexity
 Inverse of Ackermann's function.
 - $\alpha(n) = \min\{k \ge 1 \mid A(k,1) > n\},\$
 - The inverse function grows very slowly
 - α(n) < 5 until n = 2^{A(4,1)} + 1
 - A(4,1) >> 10⁸⁰

• For all practical purposes, α (n) < 5

Time Complexity

Theorem 12.2 [Tarjan and Van Leeuwen] Let T(n,m) be the maximum time required to process any intermixed sequence of n finds and unions.

 $T(n,m) = O(m \alpha (n))$

when we start with singleton sets and use either the weight or height rule for unions and any one of the path compression methods for a find.