


 

• Union and Find for Disjoint Data sets 

 



• Given a set {1, 2, …, n} of n elements 

• Initially each element is in a different set 
• {1}, {2}, …, {n} 

• An intermixed sequence of union and find 
operations is performed 

• A union operation combines two sets into one 
• Each of the n elements is in exactly one set at any 

time 

• Can be proven by induction 

• A find operation identifies the set that contains a 
particular element 

• Application – Equivalence Class 



• Suppose we have N distinct items. We want to partition 
the items into a collection of sets such that: 
• each item is in a set 

• no item is in more than one set 

• Examples 
• BU students according to majors, or 

• BU students according to GPA, or 

• Graph vertices according to connected components 

• The resulting sets are said to be disjoint sets. 



• Set : a collection of (distinguishable) elements 

• Two sets are disjoint if they have no common 
elements  

• Disjoint-set data structure: 
• maintains a collection of disjoint sets 

• each set has a representative element 

• supported operations: 

• MakeSet(x)  

• Find(x)  

• Union(x,y) 



• MakeSet(x) 

• Given object x, create a new set whose only 

element (and representative) is pointed to by x 

• Find(x)  

• Given object x, return (a pointer to) the 

representative of the set containing x 

•  Assumption: there is a pointer to each x so we 

never have to look for an element in the structure 



• Union(x,y) 

• Given two elements x, y, merge the disjoint sets 

containing them.  

• The original sets are destroyed. 

• The new set has a new representative (usually one 

of the representatives of the original sets) 

• At most n-1 Unions can be performed where n is 

the number of elements (why?) 



Disjoint set algorithms are sometimes called union-find 

algorithms. 

 



Find the connected components of the 

undirected graph G=(V,E) (maximal 

subgraphs that are connected). 

 for (each vertex v in V) 

  Makeset(v): put v in its own set 

 for (each edge (u,v) in E) 

  if (find(u) ~= find(v)) 

   union(u,v) 

Now we can find if two vertices x and y are in 
the same connected component by testing 

 find(x) == find(y) 



In the discussion that follows: 
• n is the total number of elements (in all sets). 

• m is the total number of operations performed 



• Using linked lists: 

• The first element of the list is the representative 

• Each node contains: 

• an element 

• a pointer to the next node in the list 

• a pointer to the representative 



• Using linked lists: 

• MakeSet(x) 

• Create a list with only one node, for x 

• Time O(1) 

• Find(x)  

• Return the pointer to the representative (assuming you 

are pointing at the x node) 

• Time O(1) 



• Using linked lists: 

• Union(x,y) 

1 . Append y’s list to x’s list. 

2 . Pick x as a representative 

3 . Update y’s “representative” pointers 

• A sequence of m operations may take O(m2) time 

• Improvement: let each representative keep track of the 

length of its list and always append the shorter list to the 

longer one. 

• Now, a sequence of m operations takes O(m+nlgn) time  

(why?) 



 

• Let each representative keep track of the 

length of its list and always append the 

shorter list to the longer one. 

• Theorem: Any sequence of m operations 

takes     O(m+n log n) time. 



• Using arrays: 

• Keep an array of size n 

• Cell i of the array holds the representative of the 

set containing i. 

• Similar to lists, simpler to implement. 



• O(n + u log u + f), where u and f are, respectively, the 

number of union and find operations in the sequence of 

requests 

 

• Can we do better? 



• A simple data structure for implementing disjoint sets 
is the up-tree. 
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H, A and W belong to the same 
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X, B, R and F are in the same 

set. X is the representative 
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• S = {2, 4, 5, 9, 11, 13, 30} 
• Some possible tree representations: 
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Find is easy. Just follow pointer to 
representative element. The 
representative has no parent. 

find(x)  

1.  if (parent(x) exists)// not the root 
 return(find(parent(x)); 

2.  else return (x); 

 

Worst case, height of the tree 

 



• Start at the node that represents element i and climb up 
the tree until the root is reached 

• Return the element in the root 

• To climb the tree, each node must have a parent pointer 
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• find(i) is to identify the set that contains element i 

• In most applications of the union-find problem, the user does 

not provide set identifiers 

• The requirement is that find(i) and find(j) return the same 

value iff elements i and j are in the same set 

4 

2 9 11 30 5 13 

find(i) will return the element that is in the tree root 



• Use nodes that have two fields:  
element and parent 

 Use an array table[] such that table[i] is a pointer to 
the node whose element is i 

 To do a find(i) operation, start at the node given by 
table[i] and follow parent fields until a node whose 
parent field is null is reached 

 Return element in this root node 
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(Only some table entries are shown.) 



• Use an integer array parent[] such that parent[i] is the 

element that is the parent of element i 
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• Union is more complicated.  

 

• Make one representative element point to the other, 

but which way? 

 Does it matter? 

 

• In the example, some elements are now deeper away 

from the root 
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X points to H 

B, R and F are 

now deeper 

H points to X 

A and W are 

now deeper 



public union(rootA,  rootB) 

      {parent[rootB] = rootA;} 

 

 

• Time Complexity: O(1) 

 



Union can be done in O(1), but may cause find to 

become O(n) 

 

A B C D E 

Consider the result of the following sequence of operations: 

 Union (A, B) 

 Union (C, A) 

 Union (D, C) 

 Union (E, D) 



• There are two heuristics that improve the performance of 

union-find. 

• Union by weight or height 

• Path compression on find 

 



• Make tree with smaller height a subtree of the other tree 
• Break ties arbitrarily 
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• Make tree with fewer number of elements a subtree of the other tree 
• Break ties arbitrarily 
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• Root of each tree must record either its height or the 
number of elements in the tree. 

• When a union is done using the height rule, the height 
increases only when two trees of equal height are united. 

• When the weight rule is used, the weight of the new tree 
is the sum of the weights of the trees that are united. 

 

 



• If we start with single element trees and perform unions 

using either the height or the weight rule. The height of a 

tree with p elements is at most floor (log2p) + 1. 

• Proof is by induction on p.  



Always attach smaller tree to larger. 

 union(x,y)  

  rep_x = find(x); 

  rep_y = find(y); 

  if (weight[rep_x] < weight[rep_y]) 

   A[rep_x] = rep_y; 

   weight[rep_y] += weight[rep_x]; 

  else 

   A[rep_y] = rep_x; 

   weight[rep_x] += weight[rep_y]; 

  



• If unions are done by weight, the depth of any 

element is never greater than log n + 1. 

• Inductive Proof:  

• Initially, ever element is at depth zero.  

• When its depth increases as a result of a union operation 

(it’s in the smaller tree), it is placed in a tree that 

becomes at least twice as large as before (union of two 

equal size trees). 

• How often can each union be done? -- lg n times, 

because after at most lg n unions, the tree will contain all 

n elements. 

• Therefore, find becomes O(log n) when union by 

weight is used -- even without path compression. 



Each time we do a find on an element E, we 
make all elements on path from root to E be 
immediate children of root by making each 
element’s parent be the representative. 

 find(x) 

  if (A[x]<0) 

   return(x); 

  A[x] = find(A[x]); 

  return (A[x]); 

 When path compression is done, a sequence 
of m operations takes O(m log n) time. 
Amortized time is O(log n) per operation. 

 



• find(1) 

• Do additional work to make future finds easier 
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a, b, c, d, e, f, and g are subtrees 

 



• Make all nodes on find path point to tree root. 

• find(1) 
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a, b, c, d, e, f, and g are subtrees 

 
Makes two passes up the tree 



• The Ackermann’s function is the simplest 
example of a well-defined total function which is 
computable but not primitive recursive.  

• "A function to end all functions" -- Gunter Dötzel. 
• 1. If m = 0 then A(m, m) = m + 1  

• 2. If n = 0 then A(m, n) = A(m-1, 1)  

• 3. Otherwise, A(m, n) = A(m-1, A(m, n-1))  

• The function f(n) = A(n, n) grows much faster 
than polynomials or exponentials or any function 
that you can imagine  

 



• Ackermann’s function. 

 A(m,n) = 2n, m = 1 and n >= 1 

 A(m,n) = A(m-1,2), m>= 2 and n = 1 

 A(m,n) = A(m-1,A(m,n-1)), m,n >= 2 

• Ackermann’s function grows very rapidly as m and n increase 

 A(2,4) = 265,536 



• Inverse of Ackermann’s function. 

 a(n) = min{k>=1 | A(k,1) > n},  

 The inverse function grows very slowly 

 a(n) < 5 until n = 2A(4,1)  + 1 

 A(4,1) >> 1080 

• For all practical purposes, a (n) < 5 



Theorem 12.2 [Tarjan and Van Leeuwen] 

Let T(n,m) be the maximum time required to process any 
intermixed sequence of n finds and unions.  

T(n,m) = O(m a (n)) 
when we start with singleton sets and use either the weight or 

height rule for unions and any one of the path compression 
methods for a find. 

 


