

• Union and Find for Disjoint Data sets

• Given a set {1, 2, …, n} of n elements

• Initially each element is in a different set
• {1}, {2}, …, {n}

• An intermixed sequence of union and find
operations is performed

• A union operation combines two sets into one
• Each of the n elements is in exactly one set at any

time

• Can be proven by induction

• A find operation identifies the set that contains a
particular element

• Application – Equivalence Class

• Suppose we have N distinct items. We want to partition
the items into a collection of sets such that:
• each item is in a set

• no item is in more than one set

• Examples
• BU students according to majors, or

• BU students according to GPA, or

• Graph vertices according to connected components

• The resulting sets are said to be disjoint sets.

• Set : a collection of (distinguishable) elements

• Two sets are disjoint if they have no common
elements

• Disjoint-set data structure:
• maintains a collection of disjoint sets

• each set has a representative element

• supported operations:

• MakeSet(x)

• Find(x)

• Union(x,y)

• MakeSet(x)

• Given object x, create a new set whose only

element (and representative) is pointed to by x

• Find(x)

• Given object x, return (a pointer to) the

representative of the set containing x

• Assumption: there is a pointer to each x so we

never have to look for an element in the structure

• Union(x,y)

• Given two elements x, y, merge the disjoint sets

containing them.

• The original sets are destroyed.

• The new set has a new representative (usually one

of the representatives of the original sets)

• At most n-1 Unions can be performed where n is

the number of elements (why?)

Disjoint set algorithms are sometimes called union-find

algorithms.

Find the connected components of the

undirected graph G=(V,E) (maximal

subgraphs that are connected).

 for (each vertex v in V)

 Makeset(v): put v in its own set

 for (each edge (u,v) in E)

 if (find(u) ~= find(v))

 union(u,v)

Now we can find if two vertices x and y are in
the same connected component by testing

 find(x) == find(y)

In the discussion that follows:
• n is the total number of elements (in all sets).

• m is the total number of operations performed

• Using linked lists:

• The first element of the list is the representative

• Each node contains:

• an element

• a pointer to the next node in the list

• a pointer to the representative

• Using linked lists:

• MakeSet(x)

• Create a list with only one node, for x

• Time O(1)

• Find(x)

• Return the pointer to the representative (assuming you

are pointing at the x node)

• Time O(1)

• Using linked lists:

• Union(x,y)

1 . Append y’s list to x’s list.

2 . Pick x as a representative

3 . Update y’s “representative” pointers

• A sequence of m operations may take O(m2) time

• Improvement: let each representative keep track of the

length of its list and always append the shorter list to the

longer one.

• Now, a sequence of m operations takes O(m+nlgn) time

(why?)

• Let each representative keep track of the

length of its list and always append the

shorter list to the longer one.

• Theorem: Any sequence of m operations

takes O(m+n log n) time.

• Using arrays:

• Keep an array of size n

• Cell i of the array holds the representative of the

set containing i.

• Similar to lists, simpler to implement.

• O(n + u log u + f), where u and f are, respectively, the

number of union and find operations in the sequence of

requests

• Can we do better?

• A simple data structure for implementing disjoint sets
is the up-tree.

A

H

W

H, A and W belong to the same

set. H is the representative

X, B, R and F are in the same

set. X is the representative

B

X

R
F

• S = {2, 4, 5, 9, 11, 13, 30}
• Some possible tree representations:

4

2 9 11 30 5 13

4

2

9
30

5

13

11

11

4

2

9

30

5

13

Find is easy. Just follow pointer to
representative element. The
representative has no parent.

find(x)

1. if (parent(x) exists)// not the root
 return(find(parent(x));

2. else return (x);

Worst case, height of the tree

• Start at the node that represents element i and climb up
the tree until the root is reached

• Return the element in the root

• To climb the tree, each node must have a parent pointer

4

2

9
30

5

13

11

• find(i) is to identify the set that contains element i

• In most applications of the union-find problem, the user does

not provide set identifiers

• The requirement is that find(i) and find(j) return the same

value iff elements i and j are in the same set

4

2 9 11 30 5 13

find(i) will return the element that is in the tree root

• Use nodes that have two fields:
element and parent

 Use an array table[] such that table[i] is a pointer to
the node whose element is i

 To do a find(i) operation, start at the node given by
table[i] and follow parent fields until a node whose
parent field is null is reached

 Return element in this root node

4

2

9
30

5

13

11

1

table[]
0 5 10 15

(Only some table entries are shown.)

• Use an integer array parent[] such that parent[i] is the

element that is the parent of element i

4

2

9
30

5

13

11

1

parent[]
0 5 10 15

2 9 13 13 4 5 0

• Union is more complicated.

• Make one representative element point to the other,

but which way?

 Does it matter?

• In the example, some elements are now deeper away

from the root

A

H

W B

X

R

F

A

H

W B

X

R

F

X points to H

B, R and F are

now deeper

H points to X

A and W are

now deeper

public union(rootA, rootB)

 {parent[rootB] = rootA;}

• Time Complexity: O(1)

Union can be done in O(1), but may cause find to

become O(n)

A B C D E

Consider the result of the following sequence of operations:

 Union (A, B)

 Union (C, A)

 Union (D, C)

 Union (E, D)

• There are two heuristics that improve the performance of

union-find.

• Union by weight or height

• Path compression on find

• Make tree with smaller height a subtree of the other tree
• Break ties arbitrarily

4

2

9
30

5

13

11

1

7

8 3 22 6

10

20 16 14 12
union(7,13)

• Make tree with fewer number of elements a subtree of the other tree
• Break ties arbitrarily

4

2

9
30

5

13

11

1

7

8 3 22 6

10

20 16 14 12
union(7,13)

• Root of each tree must record either its height or the
number of elements in the tree.

• When a union is done using the height rule, the height
increases only when two trees of equal height are united.

• When the weight rule is used, the weight of the new tree
is the sum of the weights of the trees that are united.

• If we start with single element trees and perform unions

using either the height or the weight rule. The height of a

tree with p elements is at most floor (log2p) + 1.

• Proof is by induction on p.

Always attach smaller tree to larger.

 union(x,y)

 rep_x = find(x);

 rep_y = find(y);

 if (weight[rep_x] < weight[rep_y])

 A[rep_x] = rep_y;

 weight[rep_y] += weight[rep_x];

 else

 A[rep_y] = rep_x;

 weight[rep_x] += weight[rep_y];

• If unions are done by weight, the depth of any

element is never greater than log n + 1.

• Inductive Proof:

• Initially, ever element is at depth zero.

• When its depth increases as a result of a union operation

(it’s in the smaller tree), it is placed in a tree that

becomes at least twice as large as before (union of two

equal size trees).

• How often can each union be done? -- lg n times,

because after at most lg n unions, the tree will contain all

n elements.

• Therefore, find becomes O(log n) when union by

weight is used -- even without path compression.

Each time we do a find on an element E, we
make all elements on path from root to E be
immediate children of root by making each
element’s parent be the representative.

 find(x)

 if (A[x]<0)

 return(x);

 A[x] = find(A[x]);

 return (A[x]);

 When path compression is done, a sequence
of m operations takes O(m log n) time.
Amortized time is O(log n) per operation.

• find(1)

• Do additional work to make future finds easier

12 14 20

10

22

a

4

2

9
30

5

13

11

1

7

8 3 6

16

b c

d

e
f g

a, b, c, d, e, f, and g are subtrees

• Make all nodes on find path point to tree root.

• find(1)

12 14 20

10

22

a

4

2

9
30

5

13

11

1

7

8 3 6

16

b c

d

e
f g

a, b, c, d, e, f, and g are subtrees

Makes two passes up the tree

• The Ackermann’s function is the simplest
example of a well-defined total function which is
computable but not primitive recursive.

• "A function to end all functions" -- Gunter Dötzel.
• 1. If m = 0 then A(m, m) = m + 1

• 2. If n = 0 then A(m, n) = A(m-1, 1)

• 3. Otherwise, A(m, n) = A(m-1, A(m, n-1))

• The function f(n) = A(n, n) grows much faster
than polynomials or exponentials or any function
that you can imagine

• Ackermann’s function.

 A(m,n) = 2n, m = 1 and n >= 1

 A(m,n) = A(m-1,2), m>= 2 and n = 1

 A(m,n) = A(m-1,A(m,n-1)), m,n >= 2

• Ackermann’s function grows very rapidly as m and n increase

 A(2,4) = 265,536

• Inverse of Ackermann’s function.

 a(n) = min{k>=1 | A(k,1) > n},

 The inverse function grows very slowly

 a(n) < 5 until n = 2A(4,1) + 1

 A(4,1) >> 1080

• For all practical purposes, a (n) < 5

Theorem 12.2 [Tarjan and Van Leeuwen]

Let T(n,m) be the maximum time required to process any
intermixed sequence of n finds and unions.

T(n,m) = O(m a (n))
when we start with singleton sets and use either the weight or

height rule for unions and any one of the path compression
methods for a find.

