

Topics to be covered

Data sets

Union-Find Problem

* Given aset {1, 2, ..., n} of n elements
e Initially each element is in a different set

{11, {2}, ..., {n}

* An Intermixed sequence of union and find
operations is performed

« A union operation combines two sets into one
« Each of the n elements is in exactly one set at any

time

» Can be proven by induction

« A find operation identifies the set that contains a
particular element

» Application — Equivalence Class

Disjoint Sets

« Suppose we have N distinct items. We want to partition
the items into a collection of sets such that:
* each item iIs in a set
* no item Is in more than one set

« Examples
» BU students according to majors, or
* BU students according to GPA, or
» Graph vertices according to connected components

* The resulting sets are said to be disjoint sets.

Disjoint sets

« Set : a collection of (distinguishable) elements

« Two sets are disjoint if they have no common
elements

 Disjoint-set data structure:
* maintains a collection of disjoint sets
* each set has a representative element
* supported operations:
+ MakeSet(x)
* Find(x)
+ Union(x,y)

Disjoint sets

* MakeSet(x)

 Given object x, create a new set whose only
element (and representative) is pointed to by x

» Find(x)
» Given object x, return (a pointer to) the
representative of the set containing X

- Assumption: there is a pointer to each x so we
never have to look for an element in the structure

Disjoint sets

* Union(x,y)

* Given two elements X, y, merge the disjoint sets
containing them.

» The original sets are destroyed.

* The new set has a new representative (usually one
of the representatives of the original sets)

» At most n-1 Unions can be performed where n is
the number of elements (why?)

Union-Find Algorithms

called union-find

Disjoint Set Example

Find the connected components of the
undirected graph G=(V,E) (maximal
subgraphs that are connected).

for (each vertex v in V)

Makeset (v) : put v 1n 1its own set
for (each edge (u,v) 1n E)

if (find(u) ~= find(v))

union (u, v)

Now we can find If two vertices x and y are in
the same connected component by testing
find(x) == find(y)

Disjoint sets -- implementation

In the discussion that follows:

* n is the total number of elements (in all sets).
* m is the total number of operations performed

Disjoint Sets:Implementation #1

Using linked lists:
* The first element of the list is the representative

* Each node contains:
* an element
* a pointer to the next node in the list
* a pointer to the representative

Disjoint Sets: Implementation#1

Using linked lists:

- MakeSet(x)
» Create a list with only one node, for x
* Time O(1)
» Find(x)
* Return the pointer to the representative (assuming you
are pointing at the x node)
* Time O(1)

Disjoint Sets:Implementation#1

Using linked lists:
 Union(x,y)
1 . Append y’s list to x’s list.
2 . Pick x as a representative
3 . Update y’s “representative” pointers
» A sequence of m operations may take O(m?) time

* Improvement: let each representative keep track of the
length of its list and always append the shorter list to the
longer one.

Now, a sequence of m operations takes O(m+nign) time
(why?)

Disjoint Sets:Implementation#1
An Improvement

 Let each representative keep track of the
length of its list and always append the
shorter list to the longer one.

* Theorem: Any sequence of m operations
takes O(m+n log n) time.

-~

Disjoint Sets:Implementation

Using arrays.
» Keep an array of size n

» Cell | of the array holds the representative of the
set containing |I.

 Similar to lists, simpler to implement.

A Tight Bound

2, respectively, the
In the sequence of

Up-Trees

« A simple data structure for implementing disjoint sets
IS the up-tree.

0 X,
(A) (w) GQ

H, Aand W belong to the same X, B, R and F are in the same
set. H is the representative set. X is the representative

A Set As A Tree

- 5$={2,4,5,9, 11, 13, 30}
« Some possible tree representations:

G
e@

Operations in Up-Trees

Find Is easy. Just follow pointer to
representative element. The
representative has no parent.

find(x)

1. if (parent(x) exists)// not the root
return(find(parent(x));

2 else return (x);

Worst case, height of the tree

Steps For find(i)

 Start at the node that represents element i and climb up
the tree until the root is reached

« Return the element in the root
» To climb the tree, each node must have a parent pointer

Result Of A Find Operation

« find(i) Is to identify the set that contains element |

* In most applications of the union-find problem, the user does
not provide set identifiers

* The requirement is that find(i) and find(j) return the same
value iff elements | and | are in the same set

find(1) will return the element that is in the tree root

Possible Node Structure
* Use nodes that have two fields:

= Use an array table[] such that table[i] is a pointer to
the node whose element is i

= To do a find(l) operation, start at the node given by
table[i] and follow parent fields until a node whose
parent field is null is reached

= Return element in this root node

able entries are shown.)

Better Representation
« Use an integer array parent[] such that parent|[i] is the
element that is the parent of element |

13,

ofiic

Int to the other,

2 now deeper away

Union(H, X)

(H) X

X pointsto H
e @ e G B, Rand F are
now deeper
. X,
‘_® H points to X
@ Aand W are
° e e now deeper

A worse case for Union

Union can be done in O(1), but may cause find to
become O(n)

®) ORONO

Consider the result of the following sequence of operations:

Union (A, B)
Union (C, A)
Union (D, C)
Union (E, D)

Two Heuristics

e the performance of

Height Rule

- Make tree with smaller height a subtree of the other tree
- Break ties arbitrarily

e
‘ ‘KX
(.
union(7,13) @ @ @

. Mmﬁé%tfe&%lj ber of elements a subtree of the other tree

- Break ties arbitrarily

¢
J

union(7,13)

00

Implementation

* Root of each tree must record either its height or the
number of elements in the tree.

« When a union is done using the height rule, the height
Increases only when two trees of equal height are united.

« When the weight rule Is used, the weight of the new tree
IS the sum of the weights of the trees that are united.

Height Of A Tree

- If we start with single element trees and perform unions
using either the height or the weight rule. The height of a
tree with p elements is at most floor (log,p) + 1.

* Proof is by induction on p.

Union by Weight Heuristic

Always attach smaller tree to larger.
union (x,y)

rep x = find(x);

rep y = find(y)

if (weight[rep x] < weight[rep y])
A[rep xX] = rep y;
weight[rep y] += weight[rep x];

else
A[rep y] = rep x;
weight[rep x] += weight[rep y];

Performance w/ Union by Weight

* If unions are done by weight, the depth of any
element Is never greater than log n + 1.

* Inductive Proof:
* Initially, ever element is at depth zero.

* When its depth increases as a result of a union operation
(it's in the smaller tree), it is placed in a tree that
becomes at least twice as large as before (union of two
equal size trees).

- How often can each union be done? -- Ig n times,
because after at most Ig n unions, the tree will contain all
n elements.

. Therefore find becomes O(log n) when unlon)Y,

- AIAIIAL [— IIAAAI Py —-rre - m *IAAI . N AA*IA LS e NS B B Y. S e B e B A

Path Compression

Each time we do a find on an element E, we
make all elements on path from root to E be
Immediate children of root by making each
element’s parent be the representative.

find (x)
if (A[x]<0)
return (x) ;
A[x] = find(A[x]);

return (A[x])

When path compression is done, a sequence
of m operations takes O(m log n) time.

Path Compression

L

f g

€

\
d

PN

a, b, c,d,e, f and g are subtrees

/1

a DhYe

* find(1)
Do additional work to make future finds easier

Path Compression

- Make all nodes on find path point to tree root.
* find(1)

a, b, c,d,e, f and g are subtrees
Makes two passes up the tree

Ackermann’s Functions

* The Ackermann’s function is the simplest
example of a well-defined total function which is
computable but not primitive recursive.

t
t

A function to end all functions" -- Gunter Dotzel.
1. fm=0thenA(m, m)=m+1

* 2. Ifn=0then A(m, n) = A(m-1, 1)

« 3. Otherwise, A(m, n) = A(m-1, A(m, n-1))

The function f(n) = A(n, n) grows much faster

nan polynomials or exponentials or any function
nat you can imagine

Ackermann’s Function
 Ackermann’s function.

=A(m,n)=2"m=1andn>=1
= A(m,n) =A(m-1,2), m>=2andn=1
= A(m,n) = A(m-1,A(m,n-1)), m,n >= 2
« Ackermann’s function grows very rapidly as m and n increase
= A(2,4) = 265536

. In-\l/-elws,rg%f c&)err]r‘r‘lg)nlnes%llﬁytion.
= o(n) = min{k>=1 | A(k,1) > n},
= The inverse function grows very slowly
= o(n) < 5 until n = 2A@D + 1
= A(4,1) >> 1080

 For all practical purposes, a (n) <5

Time Complexity

Theorem 12.2 [Tarjan and Van Leeuwen]

Let T(n,m) be the maximum time required to process any
Intermixed sequence of n finds and unions.

T(n,m) = O(m a (n))
when we start with singleton sets and use either the weight or

height rule for unions and any one of the path compression
methods for a find.

