Course Name: Analysis and Design of Algorithms

Topics to be covered

- Algorithms
- What is an Algorithm?
- Characteristics
- Complexity

Algorithms

-What is an algorithm?

- An algorithm is a finite set of precise instructions for performing a computation or for solving a problem.
-This is a rather vague definition. You will get to know a more precise and mathematically useful definition when you attend CS420.
-But this one is good enough for now...

Algorithms

- Properties of algorithms:
- Input from a specified set,
- Output from a specified set (solution),
- Definiteness of every step in the computation,
- Correctness of output for every possible input,
- Finiteness of the number of calculation steps,
- Effectiveness of each calculation step and
- Generality for a class of problems.

Algorithm Examples

-We will use a pseudocode to specify algorithms, which slightly reminds us of Basic and Pascal.
-Example: an algorithm that finds the maximum element in a finite sequence
-procedure max ($a_{1}, a_{2}, \ldots, a_{n}$: integers)
-max := a
-for $\mathrm{i}:=2$ to n

- if max < a_{i} then max := a_{i}
$\cdot\{$ max is the largest element $\}$

Algorithm Examples

- Another example: a linear search algorithm, that is, an algorithm that linearly searches a sequence for a particular element.
- procedure linear_search(x: integer; $a_{1}, a_{2}, \ldots, a_{n}$: integers)
-i := 1
-while ($\mathrm{i} \leq \mathrm{n}$ and $\mathrm{x} \neq \mathrm{a}_{\mathrm{i}}$)
- $\quad i:=i+1$
-if $\mathrm{i} \leq \mathrm{n}$ then location $:=\mathrm{i}$
-else location := 0
- $\{$ location is the subscript of the term that equals x, or is zero if x is not found\}

Algorithm Examples

-If the terms in a sequence are ordered, a binary search algorithm is more efficient than linear search.
-The binary search algorithm iteratively restricts the relevant search interval until it closes in on the position of the element to be located.

Algorithm Examples

binary search for the letter ' j '
search interval
a c dfghjlmoprsuvxz

center element

Algorithm Examples

binary search for the letter ' j '

search interval

centier element

Algorithm Examples

binary search for the letter ' j '

center element

Algorithm Examples

binary search for the letter ' j '
search interval
 element

Algorithm Examples

binary search for the letter ' j '

Algorithm Examples

-procedure binary_search(x: integer; $a_{1}, a_{2}, \ldots, a_{n}$: integers)
-i $:=1 \quad\{i$ is left endpoint of search interval\}
$\cdot j:=n \quad\{j$ is right endpoint of search interval\} - while (i < j)
-begin

$$
\begin{aligned}
& m:=\lfloor(i+j) / 2\rfloor \\
& \text { if } x>a_{m} \text { then } i:=m+1 \\
& \text { else } j:=m
\end{aligned}
$$

\cdot end
-if $x=a_{i}$ then location := i
-else location := 0
$\bullet\{$ location is the subscript of the term that equals x, or is zero if x is not found\}

Complexity

- In general, we are not so much interested in the time and space complexity for small inputs.
-For example, while the difference in time complexity between linear and binary search is meaningless for a sequence with $n=10$, it is gigantic for $n=2^{30}$.

Complexity

-For example, let us assume two algorithms A and B that solve the same class of problems.
-The time complexity of A is 5,000 n, the one for B is $\left\lceil 1.1^{n}\right\rceil$ for an input with n elements.
-For $n=10$, A requires 50,000 steps, but B only 3, so B seems to be superior to A.
-For $n=1000$, however, A requires 5,000,000 steps, while B requires $2.5 \cdot 10^{41}$ steps.

Complexity

-This means that algorithm B cannot be used for large inputs, while algorithm A is still feasible.
-So what is important is the growth of the complexity functions.
-The growth of time and space complexity with increasing input size n is a suitable measure for the comparison of algorithms.

Complexity

- Comparison: time complexity of algorithms A and B

Input Size	Algorithm A	Algorithm B
n	$5,000 n$	$\lceil 1,1 n\rceil$
10	50,000	3
100	500,000	13,781
1,000	$5,000,000$	$2.5 .10^{41}$
$1,000,000$	5.10^{9}	$4,8.10^{41392}$

Complexity

-This means that algorithm B cannot be used for large inputs, while running algorithm A is still feasible.
-So what is important is the growth of the complexity functions.
-The growth of time and space complexity with increasing input size n is a suitable measure for the comparison of algorithms.

The Growth of Functions

-The growth of functions is usually described using the big-O notation.
-Definition: Let f and g be functions from the integers or the real numbers to the real numbers. - We say that $f(x)$ is $O(g(x))$ if there are constants C and k such that
$\cdot|\mathrm{f}(\mathrm{x})| \leq \mathrm{C}|\mathrm{g}(\mathrm{x})|$
-whenever $x>k$.

The Growth of Functions

-When we analyze the growth of complexity functions, $f(x)$ and $g(x)$ are always positive.
-Therefore, we can simplify the big-O requirement to
of $(x) \leq C \cdot g(x)$ whenever $x>k$.
-If we want to show that $f(x)$ is $O(g(x))$, we only need to find one pair (C, k) (which is never unique).

The Growth of Functions

-The idea behind the big-O notation is to establish an upper boundary for the growth of a function $f(x)$ for large x.
-This boundary is specified by a function $\mathrm{g}(\mathrm{x})$ that is usually much simpler than $\mathrm{f}(\mathrm{x})$.
-We accept the constant C in the requirement
of $(x) \leq \mathrm{C} \cdot \mathrm{g}(\mathrm{x})$ whenever $\mathrm{x}>\mathrm{k}$,
-because C does not grow with x .
-We are only interested in large x, so it is OK if $\mathrm{f}(\mathrm{x})>\mathrm{C} \cdot \mathrm{g}(\mathrm{x})$ for $\mathrm{X} \leq \mathrm{k}$.

The Growth of Functions

-Example:
-Show that $f(x)=x^{2}+2 x+1$ is $O\left(x^{2}\right)$.
-For $x>1$ we have:
$\cdot x^{2}+2 x+1 \leq x^{2}+2 x^{2}+x^{2}$
$\cdot \Rightarrow x^{2}+2 x+1 \leq 4 x^{2}$
-Therefore, for $\mathrm{C}=4$ and $\mathrm{k}=1$:
of $(x) \leq C x^{2}$ whenever $x>k$.
$\bullet \Rightarrow f(x)$ is $O\left(x^{2}\right)$.

The Growth of Functions

-Question: If $f(x)$ is $O\left(x^{2}\right)$, is it also $O\left(x^{3}\right)$?
-Yes. x^{3} grows faster than x^{2}, so x^{3} grows also faster than $f(x)$.
-Therefore, we always have to find the smallest simple function $g(x)$ for which $f(x)$ is $O(g(x))$.

The Growth of Functions

-"Popular" functions $g(n)$ are
-n $\log n, 1,2^{n}, n^{2}, n!, n, n^{3}, \log n$
-Listed from slowest to fastest growth:

- 1
- $\log n$
- n
- $n \log n$
- n^{2}
- n^{3}
- 2^{n}
- n!

The Growth of Functions

-A problem that can be solved with polynomial worstcase complexity is called tractable.
-Problems of higher complexity are called intractable.
-Problems that no algorithm can solve are called unsolvable.
-You will find out more about this in CS420.

Useful Rules for Big-O

-For any polynomial $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{0}$, where $a_{0}, a_{1}, \ldots, a_{n}$ are real numbers, $\cdot f(x)$ is $O\left(x^{n}\right)$.
-If $f_{1}(x)$ is $O\left(g_{1}(x)\right)$ and $f_{2}(x)$ is $O\left(g_{2}(x)\right)$, then $\left(\mathrm{f}_{1}+\mathrm{f}_{2}\right)(\mathrm{x})$ is $\mathrm{O}\left(\max \left(\mathrm{g}_{1}(\mathrm{x}), \mathrm{g}_{2}(\mathrm{x})\right)\right)$
-If $f_{1}(x)$ is $O(g(x))$ and $f_{2}(x)$ is $O(g(x))$, then $\left(f_{1}+f_{2}\right)(x)$ is $O(g(x))$.

- If $f_{1}(x)$ is $O\left(g_{1}(x)\right)$ and $f_{2}(x)$ is $O\left(g_{2}(x)\right)$, then $\left(f_{1} f_{2}\right)(x)$ is $O\left(g_{1}(x) g_{2}(x)\right)$.

Complexity Examples

-What does the following algorithm compute?
-procedure who_knows($a_{1}, a_{2}, \ldots, a_{n}$: integers)
-m := 0
ofor $\mathrm{i}:=1$ to $\mathrm{n}-1$
for $j:=i+1$ to n
if $\left|a_{i}-a_{j}\right|>m$ then $m:=\left|a_{i}-a_{i}\right|$

- $\{m$ is the maximum difference between any two numbers in the input sequence\}
-Comparisons: $\mathrm{n}-1+\mathrm{n}-2+\mathrm{n}-3+\ldots+1$

$$
=(n-1) n / 2=0.5 n^{2}-0.5 n
$$

-Time complexity is $\mathrm{O}\left(\mathrm{n}^{2}\right)$.

Complexity Examples

-Another algorithm solving the same problem:
-procedure max_diff($a_{1}, a_{2}, \ldots, a_{n}$: integers)
-min := a1
-max := 11
ofor $\mathrm{i}:=2$ to n

- if $\mathrm{a}_{\mathrm{i}}<\min$ then min := a_{i}
- else if $a_{i}>\max$ then max := a_{i}
-m := max - min
-Comparisons: 2n-2
-Time complexity is $\mathrm{O}(\mathrm{n})$.

