LECTURE 23

DIGITAL LOGIC FAMILIES

Primitive Flow Table

Present State	Next	State	Output Z
1	1	2	0

The next step is to draw the state table giving the information in tabular form 2 i.e. the primitive flow table

3	3	4	0
4	1	4	1

Flow Table

- Stable states are again indicated by circles around the stable state numbers in the Next State columns
- $1,2,3,4$
Circled state will be the same as the number
in the present state column.
- Output tries to attain to the stable state
- Primitive flow table should then be minimised where possible
- no minimisation in this example.
- Secondary variables are now assigned.

Assigning Secondary Variables

- Care must be taken not to make an assignment, which results in more than one variable change between states.
- Use a transition table/map which has states chosen for each square on the map
- Transitions from one state to another are marked on the map and if any show a diagonal path across two variable changes, a new assignment must be made.

Assigning Secondary Variables

The assigned flow table can then be written by inspection.

Present State $\mathrm{y}_{1} \mathrm{y}_{2}$	Next 0	State $\mathrm{Y}_{1} \mathrm{Y}_{2}$ 1	Output Z
1	00	01	0
2	11	01	0
3	11	10	0
4	00	10	1

Swapping state assignments for 1 and 2 would result in an unsatisfactory map.

Circuit Implementation

- Two principal implementations possible

1. Purely combinational logic gates
2. Combinational logic gates with asynchronous RS flip flops.

- Historically, asynchronous sequential circuits were known and used before synchronous sequential circuits were developed
- First practical digital systems were constructed with delays which were more adaptable to asynchronous type operations
- For this reason, the traditional method of asynchronous sequential circuit configuration has been with components that are connected to form one or more feedback loops.

Circuit Implementation

As electronic digital circuits were developed, it was realised that the flip-flop could be used as the memory element.

- Use of RS-latch in asynchronous sequential circuits produces a more orderly pattern, which may result in a reduction of the circuit complexity.
- An added advantage is that the circuit resembles the synchronous circuit in having distinct memory elements that store and specify the internal states.
- The RS-flip flip design approach assigns one flip-flop for each secondary variable.
- The inputs to these flip-flops are determined by the required change of y to Y.

Circuit Implementation with RS Flipflops

- Using the following table

Required Change Q_{t}	Output $\mathrm{To}_{\mathrm{t}+1}$	Flip-flop S	Inputs R
0	0	0	X
0	1	1	0
1	0	0	1
1	1	X	0

\Rightarrow Obtain one function for each flip-flop input as shown below.

Circuit Implementation

Circuit Implementation

Circuit Implementation

A particular advantage of the RS flip-flop method is that it is not necessary to correct for static hazards

- As all the prime implicants are present in both the set and reset functions, which will be the case in all problems.
- Hence the RS flip-flop method often requires less components.

Circuit Implementation

In the RS flip-flop method, both true and complemented y outputs are available for feedback to the flip-flop inputs.

- If the set and reset function of the flip-flop includes true and complemented variables, it is possible that both Set and Reset are a 1 together during a transition, causing both the y and outputs to be 0 .
- This might cause a critical race hazard, though this is unlikely with two-level circuits. The inverse y and output can be generates using a separate gate is necessary.

