
LECTURE 19 

DIGITAL LOGIC FAMILIES 



Mechanical switches are often used to generate binary signals to a digital 
circuit 

    -It may vibrate or bounce several times before going to a final rest  

    -Cause the signal to oscillate between 1 and 0 

 

A debounce circuit can remove the series of pulses from a contact bounce 
and produce a single smooth transition  

    -Position A(SR=01)  bouncing(SR=11)  Position B(SR=10)                        
Q = 1(set)  Q = 1(no change)  Q = 0 (reset) 



(i) Obtain a primitive table from specifications 

(ii) Reduce flow table by merging rows in the primitive flow 
table 

(iii) Assign binary state variables to each row of reduced table 

(iv) Assign output values to dashes associated with unstable 
states to obtain the output map 

(v) Simplify Boolean functions for excitation and output 
variables; 

(vi) Draw the logic diagram 



Problem Statement: 

Design a gated latch circuit (memory element) with two 
inputs, G(gate) and D(Data) and one output Q. The Q 
output will follow the D input as long as G=1. when G goes 
to 0, the information that was present at the D input at the 
time of transition is retained at the Q output. 



1-Primitive Flow Table 
• A primitive flow table is a flow table with only one stable total 

state (internal state + input) in each row. 

• In order to form the primitive flow table , we first form a table 
with all possible total states. 



1-Primitive Flow Table 
First, we fill in one square in each row 

belonging to the stable state in that row. 

Next we note that both inputs are not 
allowed to change at the same time, we 
enter dash marks in each row that differs in 
two or more variables from the input 
variables associated with the stable state. 

Next it is necessary to find values for two 
more squares in each row. The comments 
listed in the previous table may help in 
deriving the necessary information. 

 All outputs associated with unstable states 
are marked with a dash to indicate don’t 
care conditions. 



2-Reduction of the Primitive 
Flow Table 

Two or more rows can be merged 
into one row if there are non-
conflicting states and outputs in 
every columns. 

After merged into one row: 

  Don’t care entries are overwritten 

  Stable states and output values are 
included 

  A common symbol is given to the 
merged row 



3-Transition Table and Logic Diagram 

• In order to obtain the circuit described by the reduced flow table, it 
is necessary to assign a distinct binary value to each state. 

• This converts the flow table to a transition table. 

• A binary state assignment must be made to ensure that the circuit 
will be free of critical race. (This problem will be covered later) 

a=0, b=1 in this example 



Implementation with SR Latch 

 
Listed according to the transition table and the excitation 
table of SR latch 



4- Assigning Outputs to Unstable States 
• While the stable states in a flow table have specific output 

values associated with them, the unstable states have 
unspecified output entries designated by a dash. 

These unspecified output values must be chosen so that no 
momentary false outputs occur when the circuit switches 
between stable states. 

         _______________________________________ 
 If the two stable states have the save output value, then an 

unstable states that is a transient state between them must have 
the same output.  

If an output variable is to change as a result of a state change, then 
this variable is assigned a don’t care condition. 



4- Assigning Outputs to Unstable 
States 

Ex: 

• If a changes to b, the two stable states have 
the same output value =0 

 the transient unstable state b in the first row 
must have the same output value = 0 

• If b changes to c, the two stable states have 
different output values 

the transient unstable state c in the second 
row is assigned a don’t care condition 



 

Implication Table 

 

Merging of the Flow Table 

 

Compatible Pairs 

 

Maximal Compatibles 

 

Closed Covering Condition 



1. Place a cross in any square corresponding to a pair whose outputs are not equal 

2. Enter in the remaining squares the pairs of states that are implied by the pair of 
states representing the squares. (Start form the top square in the left column and 
going down and then proceeding with the next column to the right). 

3. Make successive passes through the table to determine whether any additional 
squares should be marked with a ‘x’. 

4. Finally, all the squares that have no crosses are recorded with check marks. 



Its clear that (e,d) are equivalent. And this 
leads (a,b) and (e,g) to be equivalent too. 

Finally we have [(a,b) , c , (e,d,g) , f ]4 
states. 

So the original flow table can be reduced 
to: 

 



The state table may be incompletely specified(Some next states 
and outputs are don’t care). 

Primitive flow tables are always incompletely specified 

  -Several synchronous circuits also have this property 

Incompletely specified states are not “equivalent” Instead, we 
are going to find “compatible” states 

Two states are compatible if they have the same output and 
compatible next states whenever specified Three procedural 
steps: 

     -Determine all compatible pairs 

     - Find the maximal compatibles 

     -Find a minimal closed collection of compatible 



 Implication tables are used to find compatible states. 

     -We can adjust the dashes to fit any desired condition. 

     -Must have no conflict in the output values to be merged. 

 



 A group of compatibles that contains all the possible combinations of 
compatible states. 

     -Obtained from a merger diagram. 

     -A line in the diagram represents that two states are  compatible. 

 n-state compatible  n-sided fully connected polygon. 

     -All its diagonals connected. 

•  Not all maximal 

compatibles are necessary. 

 



• From the given implication table, we have the 
following compatible: pairs:  ( a , b ) ( a , d ) ( b , c )( c 
, d )( c , e )  ( d , e ) 

• From the merger diagram, we determine the 
maximal compatibles: ( a , b ) ( a , d ) ( b , c ) ( c , d , e 
) 

• If we choose the two compatibles:( a , b ) ( c , d , e ) 

 

 

 

 

-All the 5 states are included in this set. 

- The implied states for (a,b) are (b,c). But (b,c) are not 
include in the chosen set  This set is not closed.  

-A set of compatibles that will satisfy the closed 
covering condition is ( a , d ) ( b , c ) ( c , d , e ) 



• Objective: choose a proper binary state assignment to prevent 
critical races 

• Only one variable can change at any given time when a state 
transition occurs 

• States between which transitions occur will be given adjacent 
assignments 

   -Two binary values are said to be adjacent if they differ in only 
one variable 

• To ensure that a transition table has no critical races, every 
possible state transition should be checked 

    -A tedious work when the flow table is large 

    -Only 3-row and 4-row examples are demonstrated 



Three states require two binary variables 

Outputs are omitted for simplicity 

Adjacent info. are represented by a transition diagram  

a and c are still not adjacent in such an assignment !! 

  -Impossible to make all states adjacent if only 3 states are used 



• A flow table with 4 states requires 
an assignment of two state 
variables. 

• If there were no transitions in the 
diagonal direction (from a to c or 
from b to d), it would be possible to 
find adjacent assignment for the 
remaining 4 transitions. 

 

• In order to satisfy the adjacency 
requirement, at least 3 binary 
variables are needed. 



• The following state assignment map is suitable for any 4‐row 
flow table. 

   – a, b, c, and d are the original states. 

   – e, f, and g are extra states. 

   – States placed in adjacent squares in the map will have adjacent 
assignments 



• To produce cycles: 

   – The transition from a to d must be directed through the extra state e 

   – The transition from c to a must be directed through the extra state g 

   – The transition from d to c must be directed through the extra state f 



Multiple-row method is easier 

   May not as efficient as in above 
shared-row method 

Each stable state is duplicated with 
exactly the same output 

   Behaviors are still the same 

While choosing the next states, 
choose the adjacent one 



Hazards: are unwanted switching transients that may 

appear at the output of a circuit because different 

paths exhibit different propagation delay. 

 

• Hazards occur in in combinational and asynchronous 

circuits: 

    – In combination circuits, they may cause a temporarily false 

output value. 

    – In asynchronous circuits, they may result in a transition to a 

wrong stable state. 



Static hazard: a momentary output change when no 

output change should occur 

If implemented in sum of products: 

     -no static 1-hazard  no static 0-hazard or dynamic 

hazard 

Two examples for static 1-hazard: 

 


