
LECTURE 19

DIGITAL LOGIC FAMILIES

Mechanical switches are often used to generate binary signals to a digital
circuit

 -It may vibrate or bounce several times before going to a final rest

 -Cause the signal to oscillate between 1 and 0

A debounce circuit can remove the series of pulses from a contact bounce
and produce a single smooth transition

 -Position A(SR=01)  bouncing(SR=11)  Position B(SR=10)
Q = 1(set)  Q = 1(no change)  Q = 0 (reset)

(i) Obtain a primitive table from specifications

(ii) Reduce flow table by merging rows in the primitive flow
table

(iii) Assign binary state variables to each row of reduced table

(iv) Assign output values to dashes associated with unstable
states to obtain the output map

(v) Simplify Boolean functions for excitation and output
variables;

(vi) Draw the logic diagram

Problem Statement:

Design a gated latch circuit (memory element) with two
inputs, G(gate) and D(Data) and one output Q. The Q
output will follow the D input as long as G=1. when G goes
to 0, the information that was present at the D input at the
time of transition is retained at the Q output.

1-Primitive Flow Table
• A primitive flow table is a flow table with only one stable total

state (internal state + input) in each row.

• In order to form the primitive flow table , we first form a table
with all possible total states.

1-Primitive Flow Table
First, we fill in one square in each row

belonging to the stable state in that row.

Next we note that both inputs are not
allowed to change at the same time, we
enter dash marks in each row that differs in
two or more variables from the input
variables associated with the stable state.

Next it is necessary to find values for two
more squares in each row. The comments
listed in the previous table may help in
deriving the necessary information.

 All outputs associated with unstable states
are marked with a dash to indicate don’t
care conditions.

2-Reduction of the Primitive
Flow Table

Two or more rows can be merged
into one row if there are non-
conflicting states and outputs in
every columns.

After merged into one row:

 Don’t care entries are overwritten

 Stable states and output values are
included

 A common symbol is given to the
merged row

3-Transition Table and Logic Diagram

• In order to obtain the circuit described by the reduced flow table, it
is necessary to assign a distinct binary value to each state.

• This converts the flow table to a transition table.

• A binary state assignment must be made to ensure that the circuit
will be free of critical race. (This problem will be covered later)

a=0, b=1 in this example

Implementation with SR Latch

Listed according to the transition table and the excitation
table of SR latch

4- Assigning Outputs to Unstable States
• While the stable states in a flow table have specific output

values associated with them, the unstable states have
unspecified output entries designated by a dash.

These unspecified output values must be chosen so that no
momentary false outputs occur when the circuit switches
between stable states.

 If the two stable states have the save output value, then an

unstable states that is a transient state between them must have
the same output.

If an output variable is to change as a result of a state change, then
this variable is assigned a don’t care condition.

4- Assigning Outputs to Unstable
States

Ex:

• If a changes to b, the two stable states have
the same output value =0

 the transient unstable state b in the first row
must have the same output value = 0

• If b changes to c, the two stable states have
different output values

the transient unstable state c in the second
row is assigned a don’t care condition

Implication Table

Merging of the Flow Table

Compatible Pairs

Maximal Compatibles

Closed Covering Condition

1. Place a cross in any square corresponding to a pair whose outputs are not equal

2. Enter in the remaining squares the pairs of states that are implied by the pair of
states representing the squares. (Start form the top square in the left column and
going down and then proceeding with the next column to the right).

3. Make successive passes through the table to determine whether any additional
squares should be marked with a ‘x’.

4. Finally, all the squares that have no crosses are recorded with check marks.

Its clear that (e,d) are equivalent. And this
leads (a,b) and (e,g) to be equivalent too.

Finally we have [(a,b) , c , (e,d,g) , f]4
states.

So the original flow table can be reduced
to:

The state table may be incompletely specified(Some next states
and outputs are don’t care).

Primitive flow tables are always incompletely specified

 -Several synchronous circuits also have this property

Incompletely specified states are not “equivalent” Instead, we
are going to find “compatible” states

Two states are compatible if they have the same output and
compatible next states whenever specified Three procedural
steps:

 -Determine all compatible pairs

 - Find the maximal compatibles

 -Find a minimal closed collection of compatible

 Implication tables are used to find compatible states.

 -We can adjust the dashes to fit any desired condition.

 -Must have no conflict in the output values to be merged.

 A group of compatibles that contains all the possible combinations of
compatible states.

 -Obtained from a merger diagram.

 -A line in the diagram represents that two states are compatible.

 n-state compatible  n-sided fully connected polygon.

 -All its diagonals connected.

• Not all maximal

compatibles are necessary.

• From the given implication table, we have the
following compatible: pairs: (a , b) (a , d) (b , c)(c
, d)(c , e) (d , e)

• From the merger diagram, we determine the
maximal compatibles: (a , b) (a , d) (b , c) (c , d , e
)

• If we choose the two compatibles:(a , b) (c , d , e)

-All the 5 states are included in this set.

- The implied states for (a,b) are (b,c). But (b,c) are not
include in the chosen set This set is not closed.

-A set of compatibles that will satisfy the closed
covering condition is (a , d) (b , c) (c , d , e)

• Objective: choose a proper binary state assignment to prevent
critical races

• Only one variable can change at any given time when a state
transition occurs

• States between which transitions occur will be given adjacent
assignments

 -Two binary values are said to be adjacent if they differ in only
one variable

• To ensure that a transition table has no critical races, every
possible state transition should be checked

 -A tedious work when the flow table is large

 -Only 3-row and 4-row examples are demonstrated

Three states require two binary variables

Outputs are omitted for simplicity

Adjacent info. are represented by a transition diagram

a and c are still not adjacent in such an assignment !!

 -Impossible to make all states adjacent if only 3 states are used

• A flow table with 4 states requires
an assignment of two state
variables.

• If there were no transitions in the
diagonal direction (from a to c or
from b to d), it would be possible to
find adjacent assignment for the
remaining 4 transitions.

• In order to satisfy the adjacency
requirement, at least 3 binary
variables are needed.

• The following state assignment map is suitable for any 4‐row
flow table.

 – a, b, c, and d are the original states.

 – e, f, and g are extra states.

 – States placed in adjacent squares in the map will have adjacent
assignments

• To produce cycles:

 – The transition from a to d must be directed through the extra state e

 – The transition from c to a must be directed through the extra state g

 – The transition from d to c must be directed through the extra state f

Multiple-row method is easier

 May not as efficient as in above
shared-row method

Each stable state is duplicated with
exactly the same output

 Behaviors are still the same

While choosing the next states,
choose the adjacent one

Hazards: are unwanted switching transients that may

appear at the output of a circuit because different

paths exhibit different propagation delay.

• Hazards occur in in combinational and asynchronous

circuits:

 – In combination circuits, they may cause a temporarily false

output value.

 – In asynchronous circuits, they may result in a transition to a

wrong stable state.

Static hazard: a momentary output change when no

output change should occur

If implemented in sum of products:

 -no static 1-hazard  no static 0-hazard or dynamic

hazard

Two examples for static 1-hazard:

