LECTURE 18

Digital Logic Families

Synchronous Sequential Circuits

- The change of internal state occurs in response to the synchronized clock pulses.
- The memory elements are flip-flops.

(a) Block diagram

Asynchronous Sequential Circuits

Asynchronous sequential circuits

- Internal states can change at any instant of time when there is a change in the input variables
- No clock signal is required
- Have better performance but hard to design due to timing

PTRblemsnory
elements are either unclocked FF's or time-delay elements.
-The design of these circuits is more difficult than the design of synchronous circuits due to the timing problem.

Why Asynchronous Circuits?

1- Accelerate the speed of the machine (no need to wait for the next clock pulse).

2-Used when the input signals change independently of the clock pulses.

3- Simplify the circuit in the small independent circuits.

4- Used to communicate two circuits each have its own clock.

Asynchronous Circuits

- The delay elements provide short-term memory for the sequential circuits.
- Present state variables [y1..yk] are called secondary variables
- Next state variables [Y1..Yk] are called excitation variables.
- When an input variable changes, it takes a certain time to propagate through the combinational circuit to change Y , and then Y takes a certain time to propagate through the delay element to become a new state.

Asynchronous Circuits

- The circuit reaches a steady-state condition when yi= Yi for $\mathrm{i}=1,2,$. K.
- Stable System:
for a given value of input variables, the system is stable if the circuit reaches a steady state condition.
- Fundamental-mode operation:
this mode assumes that the one input signal changes at a time and only when the circuit is in stable condition.
- The time between two input changes must be longer than the time takes the circuit to reach a stable state.

Analysis Procedure

The analysis consists of obtaining a table or a diagram that describes the sequence of internal states and outputs as a function of changes in the input variables.

Transition Table

Flow Table

Stability Consideration

Transition Table

Transition table is useful to analyze an asynchronous circuit from the circuit diagram Procedure to obtain transition table:

1. Determine all feedback loops in the circuits
2. Mark the input (yi) and output (Yi) of each feedback loop
3. Derive the Boolean functions of all Y 's
4. Plot each Y function in a map and combine all maps into one table
5. Circle those values of Y in each square that are equal to the value of y in the same row

Transition Table

-If $y=00$ and $x=0 \Longrightarrow Y==00$ (Stable)
-If x changes from 0 to 1 while $y=00$, the circuit changes Y to 01 which is temporary unstable condition ($\mathrm{Y}!=\mathrm{y}$)
-As soon as the signal propagates to make $\mathrm{Y}=01$, the feedback path causes a change in y to 01. (transition form the first row to the second row)
-If the input repeatedly alternates between 0 and 1 , the circuit will repeat the sequence of states

Transition Table

In an asynchronous sequential circuit, the internal state can change immediately after a change in the input.

It is sometimes convenient to combine the internal state with input
value together and call it the Total State of the circuit.
(Total state $=$ Internal state + Inputs)

In the last example , the circuit has

- 4 stable total states: ($\mathrm{y} 1 \mathrm{y} 2 \mathrm{x}=\mathbf{0 0 0}, \mathbf{0 1 1}, \mathbf{1 1 0}$, and 101)
- 4 unstable total states: ($\mathrm{y} 1 \mathrm{y} 2 \mathrm{x}=001,010,111$, and 100)

Flow Table

- A flow table is similar to a transition table except that the internal state are symbolized with letters rather than binary $\mathrm{r}{ }^{\cdots-\cdots}$
- It also includes the output values of the circuit for each stable state.

(b) Two states with two inputs and one output

Flow Table

- In order to obtain the circuit described by a 0 flow table, it is
necessary to convert the flow table into a transition table from which we can derive the logic diagram .
- This can be done through the assignm ϵ of a distinct binary value to each state.

Two or more binary state variables will change value when one input variable changes.

Cannot predict state sequence if unequal delay is encountered.

Non-critical race: The final stable state does not depend on the change order of state variables
Critical race: The change order of state variables will result in different stable states Should be avoided !!

(a) Possible transitions:

$$
\begin{aligned}
& 00 \rightarrow 11 \\
& 00 \rightarrow 01 \rightarrow 11 \\
& 00 \rightarrow 10 \rightarrow 11
\end{aligned}
$$

(b) Possible transitions:

$$
\begin{aligned}
& 00 \rightarrow 11 \rightarrow 01 \\
& 00 \rightarrow 01 \\
& 00 \rightarrow 10 \rightarrow 11 \rightarrow 01
\end{aligned}
$$

(a) Possible transitions:

$$
\begin{aligned}
& 00 \rightarrow 11 \\
& 00 \rightarrow 01 \\
& 00 \rightarrow 10
\end{aligned}
$$

Race Solution

It can be solved by making a proper binary assignment to the state variables.
The state variables must be assigned binary numbers in such a way that only one state variable can change at any one time when a state transition occurs in the flow table.
It will be discussed later.

(a) State transition: $00 \rightarrow 01 \rightarrow 11 \rightarrow 10$

(b) State transition: $00 \rightarrow 01 \rightarrow 11$

(c) Unstable

Stability Check

Asynchronous sequential circuits may oscillate between unstable states due to the feedback
-Must check for stability to ensure proper operations
Can be easily checked from the transition table
-Any column has no stable stat \Rightarrow unstable
-Ex: when x1x2=11 in Fig. 9-9(b), Y and y are never the same

$$
Y=x^{\prime} 1 \times 2+x 2 y^{\prime}
$$

(b) Transition table

Latches in Asynchronous Circuits

-The traditional configuration of asynchronous circuits is using one or more feedback loops

- No real delay elements.
-It is more convenient to employ the SR latch as a memory element in asynchronous circuits
- Produce an orderly pattern in the logic diagram with the memory elements clearly visible.
-SR latch is also an asynchronous circuit
- Will be analyzed first using the method for asynchronous circuits.

SR Latch with NOR Gates

(a) Crossed-coupled circuit

(c) Circuit showing feedback

(b) Truth table

SR
$S=1, R=1(S R=1)$ should not be used $\Rightarrow S R=0$ is normal mode

$$
Y=S R^{\prime}+R^{\prime} y
$$

$Y=S+R^{\prime} y$ when $S R=0 \Longrightarrow$ * should be carefu
(d) Transition table checked first

SR Latch with NAND Gates

(a) Crossed-coupled circuit

(c) Circuit showing feedback

S	R	Q	Q^{\prime}	
1	0	0	1	
1	1	0	1	
(After $S R=10)$				
0	1	1	0	
1	1	1	0	(After $S R=01$)
0	0	1	1	

(b) Truth table

SR

$Y=S^{\prime}+R y$ when $S^{\prime} R^{\prime}=0$
(d) Transition table
$S=1, R=1(S R=1)$ should not be used $\Rightarrow S R=0$ is normal mode

* should be carefu checked first

Analysis Procedure

Analysis Procedure for NOR latch based asynchronous circuit
(i) Label each latch o/p with Yi and feed back path with yi
(ii) Derive Boolean functions for Si and Ri
(iii) Check $S R=0$ for each NOR latch
(iv) Evaluate $Y=S+R^{\prime} y$ for each latch
(v) Construct the transition table
(vi) Circle all stable states

Analysis Example

Analysis Example

The procedure for analyzing an asynchronous sequential circuit with SR latches can be summarized as follows:

1. Label each latch output with Yi and its external feedback path with yi for $\mathrm{i}=1,2, \ldots, \mathrm{k}$
2. Derive the Boolean functions for the Si and Ri inputs in each latch.

$$
\begin{array}{ll}
S_{1}=x_{1} y_{2} & S_{2}=x_{1} x_{2} \\
R_{1}=x_{1}^{\prime} x_{2}^{\prime} & R_{2}=x_{2}^{\prime} y_{1}
\end{array}
$$

Analysis Example

3. Check whether $S R=0$ for each NOR latch or whether $S^{\prime} R^{\prime}=0$ for each NAND ${ }_{R}$ atch. (if either of the two conditions is not satisfied, there is a poss shillity2that the circuit may not operate properly) $S_{2} R_{2}=x_{1} x_{2} x_{2}^{\prime} y_{1}=0$
4. Evaluate $\mathrm{Y}=\mathrm{S}+\mathrm{R}^{\prime} \mathrm{y}$ for each NOR latch or $\mathrm{Y}=\mathrm{S}^{\prime}+\mathrm{Ry}$ for each $N A_{\text {NI }}$ Gatc $^{2} \mathbb{R}_{1}^{\} y_{1}=x_{1} y_{2}+\left(x_{1}+x_{2}\right) y_{1}=x_{1} y_{2}+x_{1} y_{1}+x_{2} y_{2}$

$$
Y_{2}=S_{2}+R_{2}^{\prime} y_{2}=x_{1} x_{2}+\left(x_{2}+y_{1}^{\prime}\right) y_{2}=x_{1} x_{2}+x_{2} y_{2}+y_{1}^{\prime} y_{2}
$$

Analysis Example

5. Construct a map, with the y's representing the rows and the x inputs representing the columns.
6. Plot the value of $Y=Y 1 Y 2 \ldots Y k$ in the map.
7. Circle all stable states such that $Y=y$. the result is then the transition table.

- The transition table shows that the circuit is stable
- Race Conditions: there is a critical race condition when the circuit is initially in total state $\mathrm{y} 1 \mathrm{y} 2 \times 1 \times 2=1101$ and $\times 2$ changes from 1 to 0 .
-The circuit should go to the total state 0000.
-If Y 1 changes to 0 before Y 2 , the circuit
 goes to total state $\underline{0100}$ instead of $\underline{0000}$.

Implementation Procedure

Procedure to implement an asynchronous sequential circuits with SR latches:

1. Given a transition table that specifies the excitation function $\mathrm{Y}=\mathrm{Y} 1 \mathrm{Y} 2 . . . \mathrm{Yk}$, derive a pair of maps for each Si and Ri using th latch excitation table
2. Derive the Boolean functions for each Si and Ri (do not to make Si and Ri equal to 1 in the same minterm square)
3. Draw the logic diagram using k latches together with the gates required to generate the S and R (for NAND latch, use the complemented values in step 2)

Implementation Procedure

Latch Excitation Table

- During the implementation process, the transition table of the circuit is available and we wish to find the values of S and R.
- Excitation table: Lists the required inputs S and R for each of the possible transition from y to Y.

Implementation Example

- Given a transition table that specifies the excitation function
$Y=Y 1 Y^{-}$
$x_{1} \cdot x_{2}$ circuit cedure for implementing a ımarized as follows:

Implementation Example

1. Derive a pair of maps for Si and Ri for each $\mathrm{I}=1$, $2, \ldots$, . . (This is done by using the latch excitation table)

(c) Map for $S=x_{1} x^{\prime}{ }_{2}$

(d) Map for $R=x_{1}^{\prime}$

Implementation Example

	NOR Latch	NAND Latch
$\mathrm{S}=$	$\mathrm{x} 1 \mathrm{x}^{\prime} 2$	$\left(\mathrm{x}_{1} \mathrm{x}^{\prime} 2\right)^{\prime}$
$\mathrm{R}=$	$\mathrm{x}^{\prime} 1$	x 1

2. Draw the logic diagram, using k latches together with the gates required to generate the S and R Boolean functions obtained in step1 (for NAND latches, use the complemented valı

(e) Circuit with NOR latch

(f) Circuit with NAND latch
