LECTURE 17

COMBINATIONAL DESIGN USING MSI DEVICES

- PLDs
 - Programmable Logic Devices (PLD)
 - General purpose chip for implementing circuits
 - Can be customized using programmable switches
 - Programmable devices have their functionality programmed before they are first used.
 - Range in complexity from 100's to 10,000's of logic gates.
 - Main types of PLDs
 - ROM
 - PLA
 - PAL Simple/Sequential Prog Logic Devices
 - CPLD (Complex Prog. Logic Devices)
 - FPGA (Field Prog Gate Array)
 - Custom chips: standard cells, sea of gates

PLD's

Most of these devices are based on a two level structure (sum of products form).

ROM

- A ROM (Read Only Memory) has a fixed AND plane and a programmable OR plane
- Size of AND plane is 2ⁿ where n = number of input pins
 - Has an AND gate for every possible minterm so that all input combinations access a different AND gate
- OR plane dictates function mapped by the ROM

- P input lines: address lines
- 2^p distinct addresses = M locations
- N of bits at each location = Data
- n output lines: word (no of bits stored data)
- CS Signal Chip Select Signal
- RD Signal Read Signal

Address Lines (P) such that $2^{P} \ge M$ (M is no of locations)

 $F(A,B,C) = \Sigma(0,3,5,6)$

- a M x N decoder is used to select the location
- plus m OR gates
- can be used to implement any Boolean functions of n input variables
- a fixed AND array and a programmable OR array

4x4 ROM

• A 32x4 ROM

12

- combinational logic Circuit implementation
 - store the truth table in a ROM

 \dot{F}_2

 F_1

	Inputs								
A,	A_1	Ao	B_5	B_4	<i>B</i> ₃	B ₂	B_1	B_0	Decimal
0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	1	1
0	1	0	0	0	0	1	0	0	4
0	1	1	0	0	1	0	0	1	9
1	0	0	0	1	0	0	0	0	16
1	0	1	0	I	1	0	0	1	25
1	L	0	1	0	0	1	0	0	36
1	1	1	1	1	0	0	0	1	49

TABLE 5-5 Truth Table for Circuit of Example 5-3

4 ₂	A_1	A_0	F_{1}	F_{2}	F_{3}	F_4
0	0	0	0	0	0	0
0	0	I	0	0	0	0
0	1	0	0	0	0	1
0	1	1	0	0		0
1	0	0	0	1	0	0
1	0	1	0	1	1	0
1	1	0	1	0	0	1
1	1	1	1	1	0	0

(b) ROM truth table

(a) Block diagram

Types of ROMs

- mask programming ROM
 - IC manufacturers
 - is economical only if large quantities
- PROM: Programmable ROM
 - fuses
 - universal programmer
- EPROM: erasable PROM
 - floating gate
 - ultraviolet light erasable
- EEPROM: electrically erasable PROM
 - longer time is needed to write
 - flash ROM
 - limited times of write operations

Programmable Logic Array (PLA) – (Both Array are programmable)

PLA

Advantages of PLA:

- Both AND and OR array are programmable,
- It gives flexibility for implementation of Logic design.
- Included as a part of larger chips such as microprocessors.
- Power requirement is less than ROM.
- Cost is also less.

Disadvantages:

Simplification of boolean expression is required.