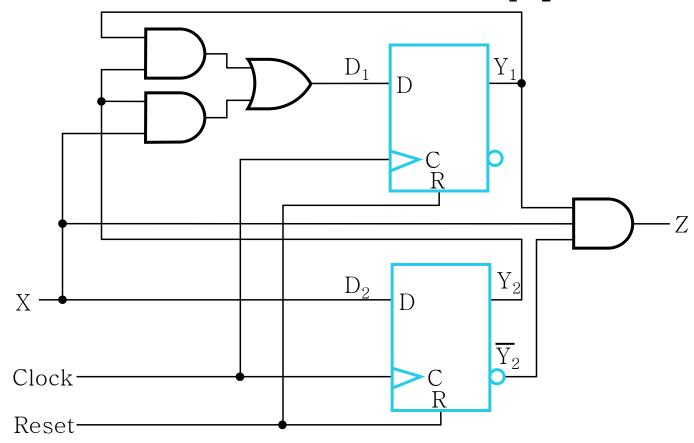
LECTURE 14

Digital Logic Families

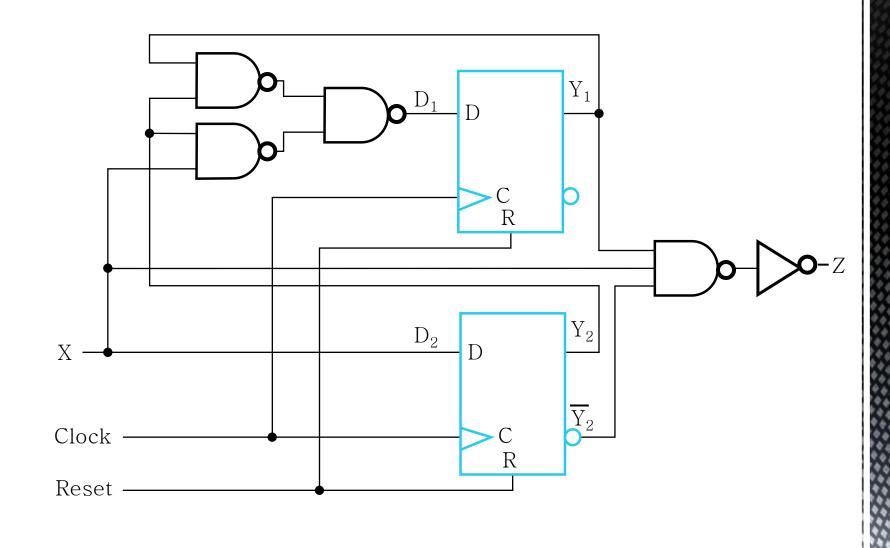
Map to Technology

Library: D-type Flip-Flops with Reset input

Reset input is used to reset to start state: Y₁ Y₂ = '00'



Circuit Implementation with NAND

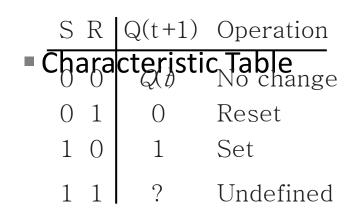


Using SR, JK, and T Flip-Flop Types

Characteristic table (used in analysis)

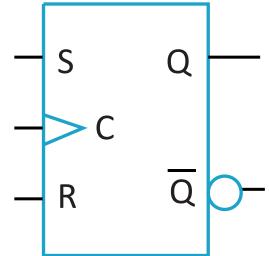
- Defines the next state of the flip-flop in terms of flip-flop inputs and current state
- Characteristic equation (used also in analysis)
 - Obtained from characteristic table
 - Defines the next state of the flip-flop as a Boolean function of the flip-flop inputs and the current state
- Excitation table (used in design)
 - Defines the flip-flop input variable values as function of the current state and next state

SR Flip-Flop



 Characteristic Equation
 Q(t+1) = S + R Q(t)
 S R = 0 (S and R cannot be 1
 simultaneously)

Q(t)	Q(t+1)	S R	Operation No change Set Reset
Excita	tion Ta	bleX	No change
0	1	1 0	Set
1	0	0 1	Reset
1	1	Χ Ο	No change



One-Hot Assignment

- Use one flip-flop per state: m states $\Rightarrow m$ flip-flops
 - Y₃Y₂Y₁Y₀ = 0001 (state A), 0010 (B), 0100 (C), 1000 (D)
- Flip-flop cost is higher but combinational logic might be simpler
- Provides simplified analysis and design
 - In equations, need to include only the variable that is 1 for the state, e. g., state with code 0001, is represented in equations by Y₀ instead of Y₃ Y₂ Y₁ Y₀ because if Y₀ is '1' then the remaining state variables will be '0'

One-Hot State Assignmen

A = 0001, B = 0010, C = 0100, D = 1000

The resulting coded state table:

Present State	Next State		Output	
$Y_3 Y_2 Y_1 Y_0$	x = 0	x = 1	$\mathbf{x} = 0$	x = 1
0001	0001	0010	0	0
0010	0001	0100	0	0
0100	1000	0100	0	0
1000	0001	0010	0	1

- No need for K-map, flip-flop input equations can be obtained directly from the state table
- Assume D Flip-Flops

$$D_{0} = X(Y_{0} + Y_{1} + Y_{3}) \text{ or } X Y_{2}$$

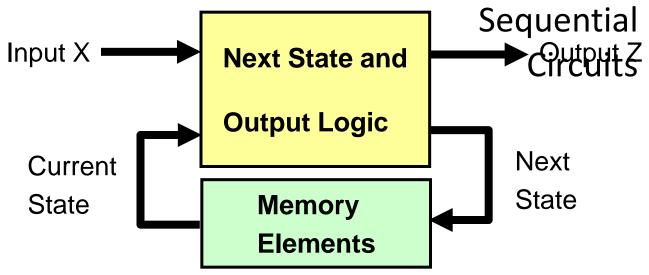
$$D_{1} = X(Y_{0} + Y_{3}) = X Y_{1} Y_{2}$$

$$D_{2} = X(Y_{1} + Y_{2}) = X Y_{0} Y_{3}$$

$$D_{3} = X Y_{2}$$

- $Z = XY_3$ Gate Input Cost = 12
- Total cost = combinational circuit cost + cost of four flip-flops

- Two ways to design clocked sequential circuits
 - Mealy and Moore type sequential circuits
- Mealy type sequential circuit
 - Output is a function of current Materian And Moore

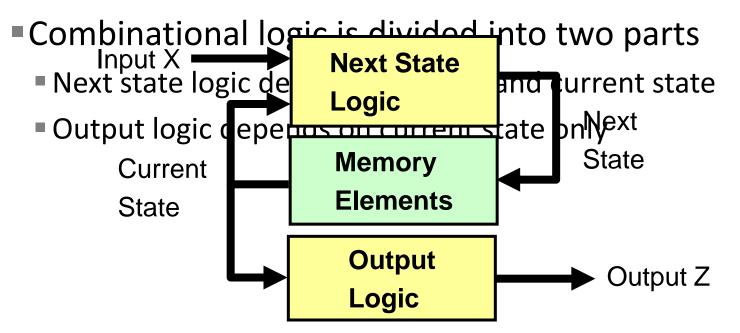


Example: 1101 sequence detector discussed above

Moore Type Sequential Circuits

Output depends on current state only

Output does not depend on input

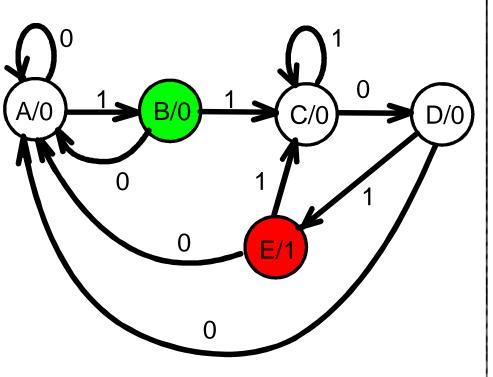


Moore Model for Sequence 1101 Detector

- For the Moore Model, outputs depend on states
- We need to add a state E with output value '1' for the final '1' in the recognized input sequence
 - This new state E, though similar to B, would generate an output of '1' and thus be different from state B
- The Moore model for a sequence recognizer usually has more states than the Mealy model

Moore State Diagram

- We mark outputs on states for Moore model
- For Mealy, outputs were marked on arcs
- Arcs now show state transitions and input only
- Add a new state E to produce the output 1
- Note that the new state E produces the same behavior as state B, but gives a different output: '1' rather than '0'



State and are show	•	ables	A/O Mo	0 1 B/0 C/0 D/0 D/0 D/0 D/0 D/0 E/1 D/0 D/0
Present • Observe t	Next that <u>ou</u> tp		Output y	0
do <u>a</u> s not	depend d	on j input >	< 0	Moore state
В	А	С	0	diagram typically
С	D	C	0	results in More
D	А	E	0	states
E	А	С	1	310105

State Assignment for Moore Detector

	I			
As in Present Sta	ite Nex	Next State		nment
and o $Y_4 Y_3 Y_2 Y_1$	Y ₀ x=0	x=1	Z	
$A = 0 \ 0 \ 0 \ 0$	1 00001	00010	0	
Using B = 0 0 0 1	0 00001	00100	0	uired
$C = 0 \ 0 \ 1 \ 0$	0 01000	00100	0	
$D = 0 \ 1 \ 0 \ 0$	0 00001	10000	0	
$E = 1 \ 0 \ 0 \ 0$	0 00001	00100	1	

Equations for Moore Sequence Detector Using D Flip Flops, input equations:

$$D_{0} = X (Y_{0} + Y_{1} + Y_{3} + Y_{4})$$

= X Y₂
$$D_{1} = X Y_{0}$$

$$D_{2} = X (Y_{1} + Y_{2} + Y_{4}) = X$$

$$Y_{0} Y_{3}$$

$$D_{3} = X Y_{2}$$

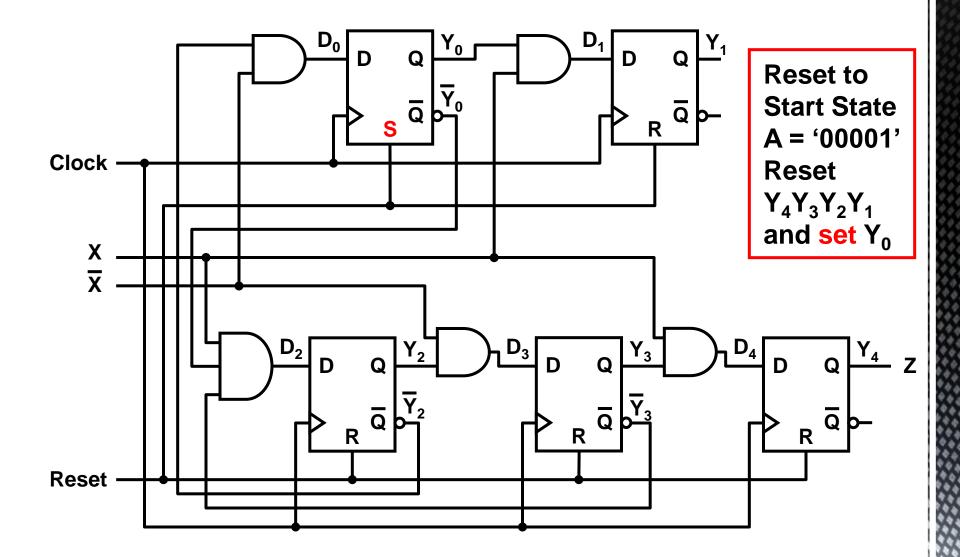
$$D_{4} = X Y_{3}$$

Output Equation Z

$$Z = Y_4$$

Gate input cost = 11

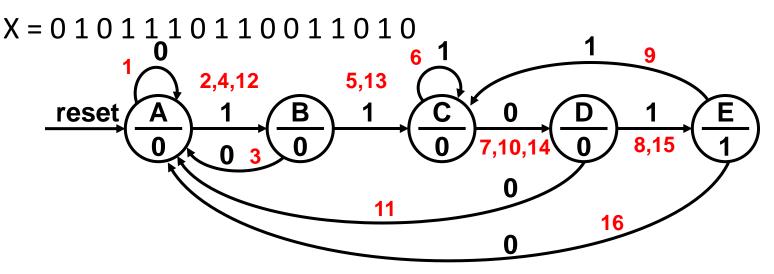
Circuit Implementation



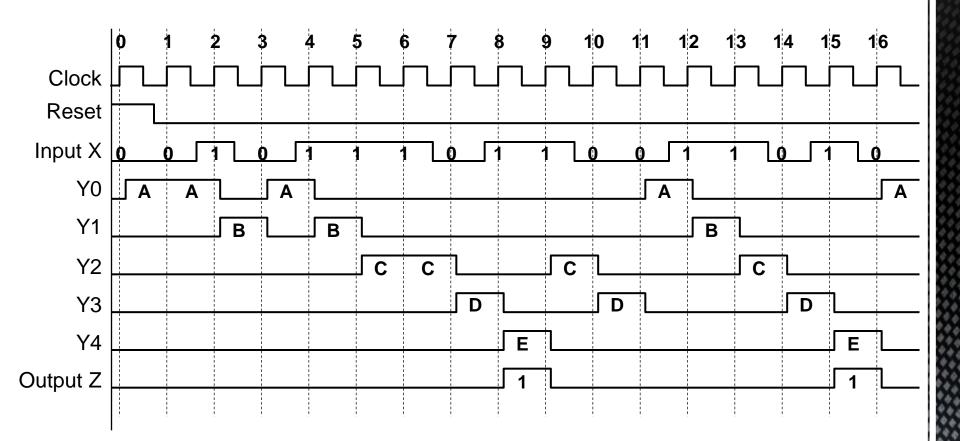
- Sequential circuits should be verified by showing that the circuit produces the original state diagram
- Verification can be done manually, or with the help of a simulation program
- All possible input combinations are applied at isometry and the state variables and outputs are observed
- A reset input is used to reset the circuit to its initial state
- Apply a sequence of inputs to test all the state-input combinations, i.e., all transitions in the state diagram
- Observe the output and the next state that appears after each clock edge in the timing diagram

Input Test Sequence

- An input test sequence is required to verify the correct operation of a sequential circuit
- It should test each state transition of the state diagram
- Test sequences can be generated from the state diagram
- Consider the Moore sequence detector. Starting at A (after reset), we can generate an input test sequence:



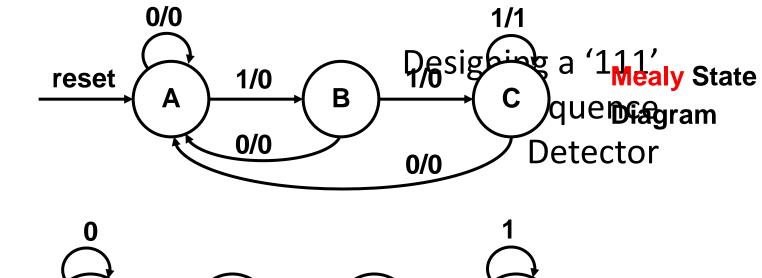
Verifying the Moore Sequence Detector

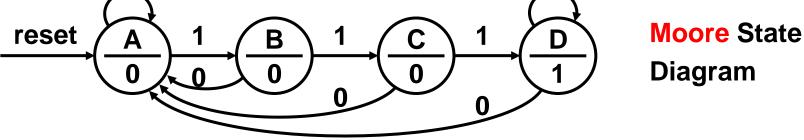


Moore versus Mealy Sequential Circuits

- Output in a Moore sequential circuit is associated with a state, while output in a Mealy circuit is associated with a transition between states
- In general, Moore state diagrams have more states than corresponding Mealy state diagrams and the Moore sequential circuit implementation might have higher cost
- Since the output in a Mealy machine is a combination of present state and input values, an unsynchronized input may result in an invalid output (drawback of Mealy)
- A Moore state diagram produces a unique output for every state irrespective of inputs. Output of a Moore machine is synchronized with the clock (better)

To illustrate the drawback of the Mealy machine, consider the design of a '111' sequence detector





A minimum of 2 state variables are required

Using Gray Code state assignment and D flip flops

Mealy State Table

Present State	Next State		Output	
Y ₁ Y ₀	x=0	x=1	x=0	x=1
$\mathbf{A} = 0 \ 0$	00	01	0	0
B = 0 1	00	11	0	0
C = 1 1	00	11	0	1

- $D_1 = X Y_0$
- $D_0 = X$
- $Z = X Y_1$

Present State	Next State		Output
Y ₁ Y ₀	x=0	x=1	Ζ
$\mathbf{A} = 0 \ 0$	00	01	0
$\mathbf{B}=0\ 1$	00	11	0
C = 1 1	00	10	0
D = 1 0	00	10	1

• $D_1 = X (Y_0 + Y_1)$ • $D_0 = X \Upsilon_1 \quad Z = Y_1 \Upsilon_0$

