
LECTURE 13

DIGITAL LOGIC FAMILIES

 Specification - Description of the Problem

 Formulation - Obtain a state diagram or state table

 State Assignment - Assign binary codes to the states

 Flip-Flop Input Equation Determination

 Select flip-flop types

 Derive flip-flop equations from next state entries in the table

Output Equation Determination

 Derive output equations from output entries in the table

Optimization - Optimize the equations

Technology Mapping - Use available flip-flops and gate technology

Verification - Verify correctness of final design

Formulation: Finding a State Diagram

 A State is an abstraction of the history of the past applied
inputs to the sequential circuit

 A state is used to remember something about the history
of input combinations applied to the circuit

 The interpretation of past inputs is tied to the synchronous
operation of the circuit

 An input value is considered only during the setup-hold time
interval for an edge-triggered flip-flop.

 Examples:

 State A represents the fact that a ‘1’ input has occurred among the
past inputs.

 State B represents the fact that a ‘0’ followed by a ‘1’ have
occurred as the most recent past two inputs.

Formulation: Finding a State Diagram

 In specifying a circuit, we use states to remember
meaningful properties of past input sequences that
are essential to predicting future output values

 A sequence recognizer is a sequential circuit that
produces a distinct output value whenever a
prescribed pattern of input symbols occur in
sequence, i.e, recognizes an input sequence
occurence

 We will develop a procedure specific to sequence
recognizers to convert a problem statement into a
state diagram

 Next, the state diagram, will be converted to a state
table from which the circuit will be designed

Sequence Recognizer Procedure

 Begin in an initial state in which NONE of the initial portion
of the sequence has occurred (reset state)

 Add a state that recognizes that first symbol has occurred

 Add states that recognize each successive symbol

 The final state represents the input sequence occurence

 Add state transition arcs which specify what happens when
a symbol not in the proper sequence has occurred

 Add other arcs which transition to states that represent the
input subsequence that has occurred

 The circuit must recognize the input sequence regardless of where it
occurs within the overall sequence

Sequence Recognizer Example

 Example: Recognize the sequence 1101

 Example: the sequence 1111101 contains 1101

 Thus, the sequential machine must remember that the first
two one's have occurred as it receives another symbol

 Also, the sequence 1101101 contains 1101 as both an initial
subsequence and a final subsequence with some overlap, i.
e., 1101101 or 1101101

 The 1 in the middle, 1101101, is in both subsequences

 The sequence 1101 must be recognized each time it occurs
in the input sequence

 Define states for the sequence to be recognized:

 Assuming it starts with first symbol

 Continues through each symbol in the sequence to be recognized

 Uses output 1 to mean the full sequence has occurred

 With output 0 otherwise

 Start in the initial state

 State ‘A’ is the initial state

 Add a state ‘B’ that recognizes the first ‘1’

 State ‘B’ is the state which represents the fact that the first ‘1’ in the
input subsequence has occurred. The output symbol ‘0’ means that
the full recognized sequence has not yet occurred

A B
1/0

After one more ‘1’, we have:

 C is the state obtained when

 the input sequence has two ‘1’s.

 Finally, after ‘110’ and a ‘1’, we have:

 Transition arcs are used to denote the output function

 Output ‘1’ on the arc from D means the sequence is recognized

 To what state should the arc from state D go? recall 1101101

A B
1/0

A B
1/0

C
1/0 0/0

C
1/0

D
1/1

?

Clearly the final ‘1’ in the recognized sequence 1101
is a sub-sequence of 1101. It follows a ‘0’ which is
not a sub-sequence of 1101. Thus it should
represent the same state reached from the initial
state after a first ‘1’ is observed. We obtain:

A B 1/0
C

1/0 0/0

D A B
1/0

C
1/0 0/0

1/1

D
1/1

 The states have the following meanings:

 A: Start state, no sub-sequence has occurred

 B: The sub-sequence ‘1’ has occurred

 C: The sub-sequence ‘11’ has occurred

 D: The sub-sequence ‘110’ has occurred

 The 1/1 on the arc from D to B means that the last ‘1’ in
1101 has occurred and thus, the output is ‘1’

1/1

A B
1/0

C
1/0

D
0/0

 The other arcs are added to each state for inputs
are not yet listed. Which arcs are missing?

 Answer:

 ‘0’ arc from state A

 ‘0’ arc from state B

 ‘1’ arc from state C

 ‘0’ arc from state D

1/1

A B
1/0

C
1/0

D
0/0

 Add the arcs for missing inputs at any state to
make the state diagram complete. We get:

 The ‘1’ arc from state C to itself implies that State
C means two or more 1's have occurred.

C

1/1

A B
1/0 1/0

D
0/0

0/0

0/0 1/0

0/0

 From the State Diagram, we can fill in the State Table

There are 4 states, one

 input, and one output

We will draw a table

 with four rows, one for

 each current state

 From State A, the ‘0’ and

 ‘1’ input transitions have

 been filled in along with

 the outputs

1/0

0/0

0/0

1/1

A B
1/0

C
1/0

D
0/0

0/0

Present

State

Next State

x=0 x=1

Output

x=0 x=1

A

B

C

D

1/0

B 0

0/0

A 0

 From the state diagram, we obtain the state table

1/0 0/0

0/0

0/0

1/1

A B
1/0

C
1/0

D
0/0

State
Present

Next State
x=0 x=1

Output
x=0 x=1

A A B 0 0
B A C 0 0
C D C 0 0
D A B 0 1

