
LECTURE 13 

DIGITAL LOGIC FAMILIES 

 



 Specification - Description of the Problem 

 Formulation - Obtain a state diagram or state table 

 State Assignment - Assign binary codes to the states 

 Flip-Flop Input Equation Determination 

 Select flip-flop types 

 Derive flip-flop equations from next state entries in the table 

Output Equation Determination 

 Derive output equations from output entries in the table 

Optimization - Optimize the equations 

Technology Mapping - Use available flip-flops and gate technology 

Verification - Verify correctness of final design 



Formulation: Finding a State Diagram 

 A State is an abstraction of the history of the past applied 
inputs to the sequential circuit 

 A state is used to remember something about the history 
of input combinations applied to the circuit 

 The interpretation of past inputs is tied to the synchronous 
operation of the circuit 

 An input value is considered only during the setup-hold time 
interval for an edge-triggered flip-flop. 

 Examples: 

 State A represents the fact that a ‘1’ input has occurred among the 
past inputs. 

 State B represents the fact that a ‘0’  followed by a ‘1’ have 
occurred as the most recent past two inputs. 



Formulation: Finding a State Diagram 

 In specifying a circuit, we use states to remember 
meaningful properties of past input sequences that 
are essential to predicting future output values    

 A sequence recognizer is a sequential circuit that 
produces a distinct output value whenever a 
prescribed pattern of input symbols occur in 
sequence, i.e, recognizes an input sequence 
occurence 

 We will develop a procedure specific to sequence 
recognizers to convert a problem statement into a 
state diagram 

 Next, the state diagram, will be converted to a state 
table from which the circuit will be designed 



Sequence Recognizer Procedure 

 Begin in an initial state in which NONE of the initial portion 
of the sequence has occurred (reset state) 

 Add a state that recognizes that first symbol has occurred 

 Add states that recognize each successive symbol 

 The final state represents the input sequence occurence 

 Add state transition arcs which specify what happens when 
a symbol not in the proper sequence has occurred 

 Add other arcs which transition to states that represent the 
input subsequence that has occurred 

 The circuit must recognize the input sequence regardless of where it 
occurs within the overall sequence 



Sequence Recognizer Example 

 Example:  Recognize the sequence 1101 

 Example: the sequence 1111101 contains 1101 

 Thus, the sequential machine must remember that the first 
two one's have occurred as it receives another symbol 

 Also, the sequence 1101101 contains 1101 as both an initial 
subsequence and a final subsequence with some overlap, i. 
e., 1101101 or 1101101 

 The 1 in the middle, 1101101, is in both subsequences 

 The sequence 1101 must be recognized each time it occurs 
in the input sequence 



 Define states for the sequence to be recognized: 

 Assuming it starts with first symbol 

 Continues through each symbol in the sequence to be recognized 

 Uses output 1 to mean the full sequence has occurred 

 With output 0 otherwise 

 Start in the initial state 

 State ‘A’ is the initial state 

 Add a state ‘B’ that recognizes the first ‘1’ 

 State ‘B’ is the state which represents the fact that the first ‘1’ in the 
input subsequence has occurred.  The output symbol ‘0’ means that 
the full recognized sequence has not yet occurred 

A B 
1/0 



After one more ‘1’, we have: 

 C is the state obtained when 

 the input sequence has two ‘1’s. 

 Finally, after ‘110’ and a ‘1’, we have: 

 

 

 

 Transition arcs are used to denote the output function 

 Output ‘1’ on the arc from D means the sequence is recognized 

 To what state should the arc from state D go? recall 1101101 

A B 
1/0 

A B 
1/0 

C 
1/0 0/0 

C 
1/0 

D 
1/1 

? 



 

Clearly the final ‘1’ in the recognized sequence 1101 
is a sub-sequence of 1101.  It follows a ‘0’ which is 
not a sub-sequence of 1101.  Thus it should 
represent the same state reached from the initial 
state after a first ‘1’ is observed.  We obtain: 
 

A B 1/0 
C 

1/0 0/0 

D A B 
1/0 

C 
1/0 0/0 

1/1 

D 
1/1 



 The states have the following meanings: 

 A:  Start state, no sub-sequence has occurred 

 B:  The sub-sequence ‘1’ has occurred 

 C:  The sub-sequence ‘11’ has occurred 

 D:  The sub-sequence ‘110’ has occurred 

 The 1/1 on the arc from D to B means that the last ‘1’ in 
1101 has occurred and thus, the output is ‘1’ 

1/1 

A B 
1/0 

C 
1/0 

D 
0/0 



 The other arcs are added to each state for inputs 
are not yet listed.  Which arcs are missing? 

 

 
 Answer: 

 ‘0’ arc from state A 

 ‘0’ arc from state B 

 ‘1’ arc from state C 

 ‘0’ arc from state D 

1/1 

A B 
1/0 

C 
1/0 

D 
0/0 



 Add the arcs for missing inputs at any state to 
make the state diagram complete. We get: 

 

 

 
 

 

 The ‘1’ arc from state C to itself implies that State 
C means two or more 1's have occurred. 

C 

1/1 

A B 
1/0 1/0 

D 
0/0 

0/0 

0/0 1/0 

0/0 



 From the State Diagram, we can fill in the State Table 

There are 4 states, one 

 input, and one output 

We will draw a table 

 with four rows, one for 

 each current state 

 From State A, the ‘0’ and 

 ‘1’ input transitions have 

 been filled in along with 

 the outputs 

1/0 

0/0 

0/0 

1/1 

A B 
1/0 

C 
1/0 

D 
0/0 

0/0 

Present  

State   

Next State   

x=0   x=1   

Output   

x=0   x=1   

A             

B       

C       

D       
  

1/0 

B 0 

0/0 

A 0 



 From the state diagram, we obtain the state table 

 

 

 

 

 
 

1/0 0/0 

0/0 

0/0 

1/1 

A B 
1/0 

C 
1/0 

D 
0/0 

State 
Present  

  
Next State   
x=0     x=1   

Output   
x=0   x=1   

A   A       B   0        0   
B   A       C 0        0   
C   D       C   0        0   
D   A       B   0        1   


