LECTURE 12

Digital Logic Families

$$
\begin{aligned}
& A_{\text {next }}=A_{\text {present }} X+B_{\text {present }} X \\
& B_{\text {next }}=A_{\text {present }}^{\prime} X \\
& Y=\left(A_{\text {present }}+B_{\text {present }}\right) X^{\prime}
\end{aligned}
$$

ImpaxtstEiqutationssf

 input and present stateOutput in terms of input and present state

Present State		Input	Next State		Output
A	B	X	A	B	Y
0	0	0	0	0	StateoTable
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

Mealy and Moore Models

- Preceding Example: Output depends on present state and input. This is called the Mealy Model
- Another kind of circuit: Output only depends on present state. This is called the Moore Model

X	Y	$A_{\text {present }}$	$A_{\text {next }}$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Flip-flops

- 1. Specification
- 2. Formulation: Draw a state diagram
- 3. Assign state number for each state
- 4. Draw state table
- 5. Derive input equations
- 5. One D flip-flop for each state bit

How to Design a Sequential Circuit

- Design a sequential circuit to recognize the input sequence 1101.
- That is, output 1 if the sequence 1101 has been read, output 0 otherwise.

Example

- 4 states, so we need 2 bits

Present State		Input	Next State		Output
A	B	X	A	B	Y
0	0	0	0	Draw	StateoTable
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	1	1	0
1	0	1	1	0	0
1	1	0	0	0	0
1	1	1	0	1	1

$$
\begin{aligned}
& A_{\text {next }}=A^{\prime} B X+A B^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& Y=A B X
\end{aligned}
$$

