LECTURE 11

Digital Logic Families

Counters

- Counters are a specific type of sequential circuit.
- Like registers, the state, or the flip-flop values themselves, serves as the "output."
- The output value increases by one on each clock cycle.
- After the largest value, the output "wraps around" back to 0 .
- Using two bits, we'd get something like this:

Present		State	
A	B	A	
0	0	0	1
0	1	1	0
1	0	1	1
1	1	0	0

- Counters can act as simple clocks to keep track of "time."
- You may need to record how many times something has happened.
- How many bits have been sent or received?
- How many steps have been performed in some computiémefits of
- All processors contain a program counter, or PC. counters
- Programs consist of a list of instructions that are to be executed one after another (for the most part).
- The PC keeps track of the instruction currently being executed.
- The PC increments once on each clock cycle, and the next program instruction is then executed.
- In digital logic and computing, a counter is a device which stores (and sometimes displays) the number of times a particular event or process has occurred, often in relationship to a clock signal.

Classifications of Counters

Asynchronous Counters

- Only the first flip-flop is clocked by an external clock. All subsequent flip-flops are clocked by the output of the preceding flip-flop.means output of previous flip-flop is connected to clock input of next flip flop.
- Asynchronous counters are slower than synchronous counters because of the delay in the transmission of the pulses from flip-flop to flip-flop.
- Asynchronous counters are also called ripple-counters because of the way the clock pulse ripples it way through the flip-flops.

Synchronous Counters

- All flip-flops are clocked simultaneously by an external clock. Means clock input of all flip flops are connected to same external clock.
- Synchronous counters are faster than asynchronous counters because of the simultaneous clocking.
- Synchronous counters are an example of state machine design because they have a set of states and a set of transition rules for moving between those states after each clocked event.
A. Evur-bu synnehrenaves "eyn" coeurnior

- The number of flip-flops determines the count limit or number of states.

$$
\left.\begin{array}{rr}
(\text { STATES }=2
\end{array}{ }^{\# \text { of flip flops }}\right) \quad \text { States / Modulus }
$$

- The number of states used is called the MODULUS.
- For example, a Modulus-12 counter would count from 0 (0000) to 11 (1011) and requires four flipflops (16 states - 12 used).

Electronic counters -- Examples

1. Up/down counter - counts both up and down, under command of a control input
2. Ring counter - formed by a shift register with feedback connection in a ring
3. Johnson counter - a twisted ring counter
4. Cascaded counter
5. Decade Counter

- Asynchronous Counter/Ripple counters

Asynchronous

- can be constructed using several flip flops
- consider the following arrangement
- with $J=K=1$ each flip flop toggles on the falling edge of its clock input

- Each: Q_{2}
 the fr previc
Q_{3}

- acts as a frequency divider
- divides frequency by 2^{n} (n is the number of stages)
- Application of a frequency divider

Clock generator for a digital watch

- Consider the pattern on the outputs of the counter as shown - displayed on the right
- the outputs count in binary from

0 to $2^{n}-1$ and then repeat

- the circuit acts as a modulo- 2^{n} counter
- since the counting process propagates from one bistable to the next this is called a ripple counter
- circuit shown is a 4-bit or modulo-16 (or mod16) ripple counter

Number of clock pulses	Q_{3}	Q_{2}	Q_{1}	Q_{0}
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1
16	0	0	0	0
17	0	0	0	1
18	0	0	1	0
19	0	0	1	1
20	0	1	0	0

- Modulo-N counters

- by using an appropriate number of stages the earlier counter can count modulo any power of 2
- to count to any other base we add reset circuitry
- e.g. the modulo-10 or decade counter

- Down and up/down Counters

- a slight modification to the earlier circuit will produce a counter that counts from $2^{n}-1$ to 0 and then restarts
- this is a down counter
- a further modification can produce an up/down counter which counts up or down depending on the state of a control line (usually labelled)
- when this is 1 the counter counts up
- when this is 0 the counter counts down
- Propagation delay in counters
- while ripple counters are very simple they suffer from problems at high speed
- since the output of one flip-flop is triggered by the change of the previous device, delays produced by each flip-flop are summed along the chain
- the time for a single device to respond is termed its propagation delay time $t_{P D}$
- an n-bit counter will take $n \times t_{P D}$ to respond
- if read before this time the result will be garbled

Drawbacks/Limita tion of Ripple Counter

- Example: 2-bit ripple binary counter.
- Output of one flip-flop is connected to the clock input of the next moresignificant flip-flop.

Timing diagram $00 \rightarrow 01 \rightarrow 10 \rightarrow 11 \rightarrow 00 \ldots$

- Example: 3-bit ripple binary counter.

- Propagation delays in an asynchronous (ripple-clocked) binary counter.
- If the accumulated delay is greater than the clock pulse, some counter states may be misrepresented!

Asynchronous

- Example: 4-bit ripple binary counter (negative-edge triggered).

