LECTURE 8

COMBINATIONAL DESIGN USING MSI DEVICES

Clock Signal

Sequential logic circuits have memory Output is a function of input and present state Sequential circuits are synchronized by a periodic "clock" signal

Figure 7.33 The clock signal consists of periodic logic-1 pulses.

Clock Signal generator

Clock signals can be generated using odd number of inverters

 $T = 2 \times t_p \times N$

A basic sequential circuit is a flip-flop Flip-flop has two stable states of complementary output values

Figure 7.34 Simple flip-flop.

SR Flip Flop

SR (set-reset) flip-flop based on two nor gates

Figure 7.35 An *SR* flip-flop can be implemented by cross coupling two NOR gates.

SR Flip Flop

Figure 7.35 An *SR* flip-flop can be implemented by cross coupling two NOR gates.

R	S	Q_n
0	0	Q_{n-1}
0	1	1
1	0	0
1	1	Not allowed

(a) Truth table

(b) Circuit symbol

Figure 7.36 The truth table and symbol for the *SR* flip-flop.

Noise Reduction in SR Flip Flop

SR flip flop can reduce a switching noise When switch is pulled down some oscillations may occur at B They will be eliminated by the flip-flop

the effects of switch bounce.

Exercise

For a given S and R inputs to SR flip-flop, sketch the output signal Q

Exercise

SR Flip Flop

SR (set-reset) flip-flop based on two nand gates

Figure 7.40 A flip-flop implemented with NAND gates. See Exercise 7.19.

Clocked SR Flip Flop Circuit

Clock controlled flip-flop changes its state only when the clock C is high

Figure 7.41 A clocked *SR* flip-flop.

Clocked SR Flip Flop Circuit with Reset

Some flip-flops have asynchronous preset Pr and clear Cl signals. Output changes once these signals change, however the input signals must wait for a change in clock to change the output

Figure 7.42 A clocked *SR* flip-flop with asynchronous preset and clear inputs.

Edge Triggered Flip Flop

Edge triggered flip-flop changes only when the clock C changes

Figure 7.43 Clock signal.

Positive Edge Triggered Flip Flop

Positive-edge triggered flip-flop changes only on the rising edge of the clock C

(b) Truth table
↑ indicates a transition
from low to high

 Q_n

 Q_{n-1}

 Q_{n-1}

0

Figure 7.44 A positive-edge-triggered D flip-flop.

Exercise

The input D to a positive-edge triggered flip-flop is shown Find the output signal Q

Exercise

Negative Edge Triggered JK Flip Flop

		С	J	K	Q_n	Comment
		0	×	×	Q_{n-1}	Memory
		1	×	×	Q_{n-1}	Memory
	0	\downarrow	0	0	Q_{n-1}	Memory
	z	\downarrow	0	1	0	Reset
		\downarrow	1	0	1	Set
<i>K</i>	\mathcal{Q}	\downarrow	1	1	\overline{Q}_{n-1}	Toggle

(a) Circuit symbol

(b) Truth table
↓ indicates a transition
from low to high

Figure 7.47 Negative-edge-triggered *JK* flip-flop.

Other Flip Flops

Toggle Flip-Flop

Race Problem

Signal can race around during φ = 1

Master-Slave Flip Flop Implementation

SLAVE MASTER SI S Q S Q Q RI 0 К Q Q R R φ

PRESET

Master transmits the signal to the output during the high clock phase and slave is waiting for the clock to change this prevents race conditions

Shift Registers

Figure 7.48 Serial-input parallel-output shift register.

Shift Registers

Figure 7.49 Parallel-input serial-output shift register.

Figure 7.50 Ripple counter.