LECTURE 5

ERROR DETECTION AND CORRECTION

Example 4

Suppose the following block of 16 bits is to be sent using a checksum of 8 bits.
1010100100111001
The numbers are added as:
10101001
00111001

Sum $\quad 11100010$
Checksum 00011101
The pattern sent is 101010010011100100011101

Example 5

Now suppose the receiver receives the pattern sent in Example 7 and there is no error.
101010010011100100011101
When the receiver adds the three sections, it will get all 1 s , which, after complementing, is all 0 s and shows that there is no error.

10101001
00111001
00011101
00000000 means that the pattern is OK.

Sum
Complement

Example 6

Now suppose there is a burst error of length 5 that affects 4 bits. 101011111111100100011101
When the receiver adds the three sections, it gets
10101111
11111001
00011101
Partial Sum
Carry
Sum
Complement

111000101
1
11000110
00111001 the pattern is corrupted.

Correction

Stop and wait

Go Back N

Sliding Window
Hamming Code

Hamming Code

Data and redundancy bits

Number of data bits \mathbf{m}	Number of redundancy bits \mathbf{r}	Total bits $\mathrm{m}+\mathbf{r}$
1	2	3
2	3	5
3	3	6
4	3	7
5	4	9
6	4	10
7	4	11

$$
2^{r} \geq m+r+1
$$

Positions of redundancy bits in Hamming code

| 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \mathbf{d} | \mathbf{d} | \mathbf{d} | r_{8} | \mathbf{d} | \mathbf{d} | \mathbf{d} | r_{4} | \mathbf{d} | r_{2} | r_{1} |

$$
2^{3}, 2^{2}, 2^{1}, 2^{0}
$$

r_{1} will take care of these bits.

$\mathbf{1 1}$	$\mathbf{9}$									$\mathbf{7}$
\mathbf{d}	\mathbf{d}	\mathbf{d}	r_{8}	\mathbf{d}	\mathbf{d}	\mathbf{d}	r_{4}	\mathbf{d}	r_{2}	r_{1}

r_{2} will take care of these bits.

$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{7}$	$\mathbf{6}$	\mathbf{y}	$\mathbf{3}$	\mathbf{y}				
\mathbf{d}	\mathbf{d}	\mathbf{d}	r_{8}	\mathbf{d}	\mathbf{d}	\mathbf{d}	r_{4}	\mathbf{d}	r_{2}	r_{1}

r_{4} will take care of these bits.

\mathbf{d}	\mathbf{d}	\mathbf{d}	r_{8}	\mathbf{d}	\mathbf{d}	\mathbf{d}	r_{4}	\mathbf{d}	r_{2}	r_{1}

r_{8} will take care of these bits.

$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{9}$	$\mathbf{8}$							
\mathbf{d}	\mathbf{d}	\mathbf{d}	r_{8}	\mathbf{d}	\mathbf{d}	\mathbf{d}	r_{4}	\mathbf{d}	r_{2}	r_{1}

Adding r_{4}										
	1	0	0	1	1	0	0	1	0	1
		10	9					3		1

Error detection using Hamming code

The bit in position 7 is in error. 7

