LECTURE 2

DIGITAL ELECTRONICS

Logic Gates, Boolean Algebra, Combinational Circuits

Boolean Algebra

- A set of rules formulated by the English mathematician George Boole describe certain propositions whose outcome would be either true or false.
- With regard to digital logic, these rules are used to describe circuits whose state can be either, 1 (true) or 0 (false).
- In order to fully understand this, the relation between the an AND gate, OR gate and NOT gate operations should be appreciated.
- A number of rules can be derived from these relations as shown in the below table.

Boolean Laws

$\left.\left.\begin{array}{|r|ll|}\hline \text { 1. } & \text { Law of Identity } & \begin{array}{l}\mathrm{A}=\mathrm{A} \\ \mathrm{A}\end{array}=\overline{\mathrm{A}}\end{array} \right\rvert\, \begin{array}{l}\mathrm{A} \cdot \mathrm{B}=\mathrm{B} \cdot \mathrm{A} \\ \mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}\end{array}\right)$

Using the truth table:
 - Example 1

solving algebraically

$$
\begin{aligned}
A+\bar{A} B & =A l+\bar{A} B \\
& =A(l+B)+\bar{A} B \\
& =A+A B+\bar{A} B \\
& =A+B(A+\bar{A}) \\
& =A+B
\end{aligned}
$$

A	B	$A+B$	$\bar{A} \bar{B}$	$A+\bar{A} B$
0	[1]	0	1	0
O]	1	1	1	1
1	1	1	İ	1
1	1	1	İ	1

Example 2

$$
\begin{aligned}
& Z=(A+\bar{B}+\bar{C})(A+\bar{B} C) \\
& Z=A A+A \bar{B} C+A \bar{B}+\bar{B} \bar{B} C+A \bar{C}+\bar{B} C \bar{C} \\
& Z=A(I+\bar{B} C+\bar{B}+\bar{C})+\overline{B C}+\overline{B C} \bar{C} \\
& Z=A+\bar{B} C
\end{aligned}
$$

Example 3

$$
\begin{aligned}
A(\bar{A}+B) & =A \bar{A}+A B \\
& =0+A B \\
& =A B
\end{aligned}
$$

Combinational Circuits

- Combinational circuit is circuit in which we combine the different gates in the circuit for example encoder, decoder, multiplexer and demultiplexer. Some of the characteristics of combinational circuits are following.
- The output of combinational circuit at any instant of time, depends only on the levels present at input terminals.
- The combinational circuit do not use any memory.
- The previous state of input does not have any effect on the present state of the circuit.
- A combinational circuit can have a n number of inputs and m number of outputs.

Block Diagram

- Half Adder

- Half adder is a combinational logic circuit with two input and two output.
- The half adder circuit is designed to add two single bit binary number A and B.
- It is the basic building block for addition of two single bit numbers.
- This circuit has two outputs carry and sum.

Half Adder

Inputs		Output	
A	B	S	C
0	0	0	0
0	1	1	0
0	1	1	0
1	1	0	1

- Full Adder

Full adder is developed to overcome the drawback of Half Adder circuit.

It can add two one-bit numbers A and B , and carry C .
The full adder is a three input and two output combinational circuit.

Full Adder

Inputs			Output	
A	B	Cin	S	Co
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

- N-Bit Parallel Adder
- The Full Adder is capable of adding only two single digit binary number along with a carry input.
- But in practical we need to add binary numbers which are much longer than just one bit.
- To add two n-bit binary numbers we need to use the n-bit parallel adder.
- It uses a number of full adders in cascade.
- The carry output of the previous full adder is connected to carry input of the next full adder.

4 Bit Parallel Adder

- In the block diagram, A_{0} and B_{0} represent the LSB of the four bit words A and B. Hence Full Adder-0 is the lowest stage.
- Hence its $\mathrm{C}_{\text {in }}$ has been permanently made 0 . The rest of the connections are exactly same as those of n-bit parallel adder is shown in fig.
- The four bit parallel adder is a very common logic circuit.

- N-Bit Parallel Subtractor
- The subtraction can be carried out by taking the 1's or 2's complement of the number to be subtracted.
- For example we can perform the subtraction (A-B) by adding either 1 's or 2's complement of B to A.
- That means we can use a binary adder to perform the binary subtraction.

- 4 Bit Parallel Subtractor

The number to be subtracted (B) is first passed through inverters to obtain its 1's complement.
The 4-bit adder then adds A and 2's complement of B to produce the subtraction.
$\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$ represent the result of binary subtraction (A-B) and carry output $\mathrm{C}_{\text {out }}$ represents the polarity of the result.

If $A>B$ then Cout $=0$ and the result of binary form $(A-B)$ then $C_{\text {out }}=$ 1 and the result is in the 2's complement form.

4 Bit Parallel SUBTRACTOR

- Half Subtractors
- Half subtractor is a combination circuit with two inputs and two outputs (difference and borrow).
- It produces the difference between the two binary bits at the input and also produces a output (Borrow) to indicate if a 1 has been borrowed.
- In the subtraction (A-B), A is called as Minuend bit and B is called as Subtrahend bit.

Inputs		Output	
A	B	$(A-B)$	Borrow
0	0	0	0
0	1	1	0
0	1	1	0
1	1	0	1

- Full Subtractors
- The disadvantage of a half subtractor is overcome by full subtractor.
- The full subtractor is a combinational circuit with three inputs A, B, C and two output D and C^{\prime}. A is the minuend, B is subtrahend, C is the borrow produced by the previous stage, D is the difference output and C^{\prime} is the borrow output.

Full Subtractors

Inputs			Output	
A	B	C	$(A-B-C)$	
0	0	0	0	

