## INTERNET FUNDAMENTALS

## **LECTURE-26**

## **Introduction to Network Security**

## OUTLINE

- Security Vulnerabilities
- DoS and D-DoS
- Firewalls
- Intrusion Detection Systems

# SECURITY VULNERABILITIES

Security Problems in the TCP/IP Protocol
 Suite - Steve Bellovin - 89

### • Attacks on Different Layers

- IP Attacks
- ICMP Attacks
- Routing Attacks
- TCP Attacks
- Application Layer Attacks



#### • TCP/IP was designed for connectivity

Assumed to have lots of trust

#### Host implementation vulnerabilities

- Software "had/have/will have" bugs
- Some elements in the specification were left to the implementers

## SECURITY FLAWS IN IP

- The IP addresses are filled in by the originating host
  - Address spoofing
- Using source address for authentication
  - r-utilities (rlogin, rsh, rhosts etc..)



Can A claim it is B to the server S?
ARP Spoofing
Can C claim it is B to the server S?
Source Routing

## SECURITY FLAWS IN IP

- IP fragmentation attack
  - End hosts need to keep the fragments till all the fragments arrive

#### Traffic amplification attack

- IP allows broadcast destination
- Problems?



# ICMP ATTACKS

### No authentication

### ICMP redirect message

- Can cause the host to switch gateways
- Benefit of doing this?
  - Man in the middle attack, sniffing

## ICMP destination unreachable

- Can cause the host to drop connection
- ICMP echo request/reply

### Many more...

http://www.sans.org/rr/whitepapers/threats/ 477.php

# ROUTING ATTACKS

### • Distance Vector Routing

- Announce 0 distance to all other nodes
  - Blackhole traffic
  - Eavesdrop

### Link State Routing

- Can drop links randomly
- Can claim direct link to any other routers
- A bit harder to attack than DV

### • BGP

- ASes can announce arbitrary prefix
- ASes can alter path





### Issues?

- Server needs to keep waiting for ACK y+1
- Server recognizes Client based on IP address/port and y+1

# TCP LAYER ATTACKS

### • TCP SYN Flooding

- Exploit state allocated at server after initial SYN packet
- Send a SYN and don't reply with ACK
- Server will wait for 511 seconds for ACK
- Finite queue size for incomplete connections (1024)
- Once the queue is full it doesn't accept requests

# TCP LAYER ATTACKS

- TCP Session Hijack
  - When is a TCP packet valid?
    - Address/Port/Sequence Number in window
  - How to get sequence number?
    - Sniff traffic
    - o Guess it
      - Many earlier systems had predictable ISN
  - Inject arbitrary data to the connection

# TCP LAYER ATTACKS

### • TCP Session Poisoning

- Send RST packet
  - Will tear down connection
- Do you have to guess the exact sequence number?
  - Anywhere in window is fine
  - For 64k window it takes 64k packets to reset
  - About 15 seconds for a T1

# APPLICATION LAYER ATTACKS

Applications don't authenticate properly

### Authentication information in clear

FTP, Telnet, POP

### • DNS insecurity

- DNS poisoning
- DNS zone transfer







Trusted (T)

- Attack when no one is around
- What other systems it trusts?
- Determine ISN behavior





- Finger @S
- showmount -e
- Send 20 SYN packets to S
- SYN flood T



Mitnick



Trusted(T)

- Attack when no one is around
- What other systems it trusts?
- Determine ISN behavior
- T won't respond to packets





- SYN flood T
- Send SYN to S spoofing as T
- Send ACK to S with a guessed number

- T won't respond to packets
- S assumes that it has a session with T





- Finger @S
- showmount –e
- Send 20 SYN packets to S
- SYN flood T
- Send SYN to S spoofing as T
- Send ACK to S with a guessed number
- Send "echo + + >  $\sim$ /.rhosts"



Trusted (T)

- Attack when no one is around
- What other systems it trusts?
- Determine ISN behavior
- T won't respond to packets
- S assumes that it has a session with T
- Give permission to anyone from anywhere

## OUTLINE

- Security Vulnerabilities
- DoS and D-DoS
- Firewalls
- Intrusion Detection Systems



# DENIAL OF SERVICE

 Objective → make a service unusable, usually by overloading the server or network

### Consume host resources

- TCP SYN floods
- ICMP ECHO (ping) floods

### Consume bandwidth

- UDP floods
- ICMP floods

# DENIAL OF SERVICE

- Crashing the victim
  - Ping-of-Death
  - TCP options (unused, or used incorrectly)

### Forcing more computation

Taking long path in processing of packets





## COORDINATED DOS



- The first attacker attacks a different victim to cover up the real attack
- The Attacker usually spoofed source address to hide origin
- Harder to deal with



# DISTRIBUTED DOS

- The handlers are usually very high volume servers
  - Easy to hide the attack packets
- The agents are usually home users with DSL/Cable
  - Already infected and the agent installed
- Very difficult to track down the attacker
- How to differentiate between DDoS and Flash Crowd?
  - Flash Crowd  $\rightarrow$  Many clients using a service legimitaly
    - Slashdot Effect
    - Victoria Secret Webcast
  - Generally the flash crowd disappears when the network is flooded
  - Sources in flash crowd are clustered

## OUTLINE

- Security Vulnerabilities
- DoS and D-DoS
- Firewalls

You are here

Intrusion Detection Systems

## FIREWALLS

- Lots of vulnerabilities on hosts in network
- Users don't keep systems up to date
  - Lots of patches
  - Lots of exploits in wild (no patch for them)
- Solution?
  - Limit access to the network
  - Put firewalls across the perimeter of the network

# FIREWALLS (CONTD...)

- Firewall inspects traffic through it
- Allows traffic specified in the policy
- Drops everything else
- Two Types
  - Packet Filters, Proxies

![](_page_28_Figure_6.jpeg)

# PACKET FILTERS

- Packet filter selectively passes packets from one network interface to another
- Usually done within a router between external and internal networks
  - screening router
- Can be done by a dedicated network element
  - packet filtering bridge
  - harder to detect and attack than screening routers

# PACKET FILTERS CONTD.

### • Data Available

- IP source and destination addresses
- Transport protocol (TCP, UDP, or ICMP)
- TCP/UDP source and destination ports
- ICMP message type
- Packet options (Fragment Size etc.)

### Actions Available

- Allow the packet to go through
- Drop the packet (Notify Sender/Drop Silently)
- Alter the packet (NAT?)
- Log information about the packet

# PACKET FILTERS CONTD.

### • Example filters

- Block all packets from outside except for SMTP servers
- Block all traffic to a list of domains
- Block all connections from a specified domain

# TYPICAL FIREWALL CONFIGURATION

- Internal hosts can access DMZ and Internet
- External hosts can access DMZ only, not Intranet
- DMZ hosts can access Internet only
- Advantages?
  - If a service gets compromised in DMZ it cannot affect internal hosts

![](_page_32_Figure_6.jpeg)

## EXAMPLE FIREWALL RULES

- Stateless packet filtering firewall
- Rule  $\rightarrow$  (Condition, Action)
- Rules are processed in top-down order
  - If a condition satisfied action is taken

# SAMPLE FIREWALL RULE

- Allow SSH from external hosts to internal hosts
  - Two rules
    - Inbound and c
  - How to know a
    - Inbound: src-p
    - Outbound: src
    - Protocol=TC
  - Ack Set?
  - Problems?

![](_page_34_Figure_10.jpeg)

| Rule  | Dir | Src<br>Addr | Src<br>Port | Dst<br>Addr | Dst<br>Port | Proto | Ack<br>Set? | Action |
|-------|-----|-------------|-------------|-------------|-------------|-------|-------------|--------|
| SSH-1 | In  | Ext         | > 1023      | Int         | 22          | TCP   | Any         | Allow  |
| SSH-2 | Out | Int         | 22          | Ext         | > 1023      | TCP   | Yes         | Alow   |

# DEFAULT FIREWALL RULES

#### Egress Filtering

- Outbound traffic from external address  $\rightarrow$  Drop
- Benefits?

### Ingress Filtering

- Inbound Traffic from internal address  $\rightarrow$  Drop
- Benefits?

### • Default Deny

• Why?

| Rule    | Dir | Src<br>Addr | Src<br>Port | Dst<br>Addr | Dst<br>Port | Proto | Ack<br>Set? | Action |
|---------|-----|-------------|-------------|-------------|-------------|-------|-------------|--------|
| Egress  | Out | Ext         | Any         | Ext         | Any         | Any   | Any         | Deny   |
| Ingress | In  | Int         | Any         | Int         | Any         | Any   | Any         | Deny   |
| Default | Any | Any         | Any         | Any         | Any         | Any   | Any         | Deny   |

# PACKET FILTERS

### Advantages

- Transparent to application/user
- Simple packet filters can be efficient

### • Disadvantages

- Usually fail open
- Very hard to configure the rules
- Doesn't have enough information to take actions
  - Does port 22 always mean SSH?
  - Who is the user accessing the SSH?

## ALTERNATIVES

### Stateful packet filters

- Keep the connection states
- Easier to specify rules
- More popular
- Problems?
  - State explosion
  - o State for UDP/ICMP?

# ALTERNATIVES

### Proxy Firewalls

- Two connections instead of one
- Either at transport level
  - SOCKS proxy
- Or at application level
  - HTTP proxy

#### Requires applications (or dynamically linked libraries) to be modified to use the proxy

# PROXY FIREWALL

### • Data Available

- Application level information
- User information

## • Advantages?

- Better policy enforcement
- Better logging
- Fail closed

### • Disadvantages?

- Doesn't perform as well
- One proxy for each application
- Client modification

## OUTLINE

- Security Vulnerabilities
- DoS and DDoS
- Firewalls

Intrusion Detection Systems

You are here

# INTRUSION DETECTION SYSTEMS

- Firewalls allow traffic only to legitimate hosts and services
- Traffic to the legitimate hosts/services can have attacks
  - CodeReds on IIS
- Solution?
  - Intrusion Detection Systems
  - Monitor data and behavior
  - Report when identify attacks

![](_page_42_Picture_0.jpeg)

# SIGNATURE-BASED IDS

## Oharacteristics

 Uses known pattern matching to signify attack

### • Advantages?

- Widely available
- Fairly fast
- Easy to implement
- Easy to update
- Disadvantages?

Cannot detect attacks for which it has no signature

0000

0

## ANOMALY-BASED IDS

#### Characteristics

- Uses statistical model or machine learning engine to characterize normal usage behaviors
- Recognizes departures from normal as potential intrusions

#### • Advantages?

- Can detect attempts to exploit new and unforeseen vulnerabilities
- Can recognize authorized usage that falls outside the normal pattern

#### • Disadvantages?

- Generally slower, more resource intensive compared to signature based IDS
- Greater complexity, difficult to configure
- Higher percentages of false alerts

# NETWORK-BASED IDS

#### Oharacteristics

 NIDS examine raw packets in the network passively and triggers alerts

#### • Advantages?

- Easy deployment
- Unobtrusive
- Difficult to evade if done at low level of network operation

#### • Disadvantages?

- Fail Open
- Different hosts process packets differently
- NIDS needs to create traffic seen at the end host
- Need to have the complete network topology and complete host behavior

![](_page_45_Picture_12.jpeg)

# HOST-BASED IDS

### Characteristics

- Runs on single host
- Can analyze audit-trails, logs, integrity of files and directories, etc.

### Advantages

- More accurate than NIDS
- Less volume of traffic so less overhead

### • Disadvantages

- Deployment is expensive
- What happens when host get compromised?

![](_page_46_Picture_10.jpeg)

![](_page_47_Picture_0.jpeg)

### • TCP/IP security vulnerabilities

- Spoofing
- Flooding attacks
- TCP session poisoning
- DOS and D-DOS
- Firewalls
  - Packet Filters
  - Proxy

## IDS

- Signature and Anomaly IDS
- NIDS and HIDS